Linoy Tsaban commited on
Commit
66aec19
·
1 Parent(s): 65837e4

Update modified_pipeline_semantic_stable_diffusion.py

Browse files
modified_pipeline_semantic_stable_diffusion.py CHANGED
@@ -685,10 +685,6 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
685
  # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
686
  # variance = self.scheduler._get_variance(timestep, prev_timestep)
687
  # variance = get_variance(model, t) #, prev_timestep)
688
- prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
689
- alpha_prod_t = self.scheduler.alphas_cumprod[t]
690
- alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
691
- beta_prod_t = 1 - alpha_prod_t
692
  beta_prod_t_prev = 1 - alpha_prod_t_prev
693
  variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
694
 
@@ -713,7 +709,7 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
713
 
714
  ## ddpm ##########################################################
715
  # compute the previous noisy sample x_t -> x_t-1
716
- if not use_ddpm:
717
  latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
718
 
719
  # call the callback, if provided
 
685
  # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
686
  # variance = self.scheduler._get_variance(timestep, prev_timestep)
687
  # variance = get_variance(model, t) #, prev_timestep)
 
 
 
 
688
  beta_prod_t_prev = 1 - alpha_prod_t_prev
689
  variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
690
 
 
709
 
710
  ## ddpm ##########################################################
711
  # compute the previous noisy sample x_t -> x_t-1
712
+ else: #if not use_ddpm:
713
  latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
714
 
715
  # call the callback, if provided