ledits / inversion_utils.py
Linoy Tsaban
Update inversion_utils.py
17db690
raw history blame
No virus
11.7 kB
import torch
import os
from tqdm import tqdm
from PIL import Image, ImageDraw ,ImageFont
from matplotlib import pyplot as plt
import torchvision.transforms as T
import os
import yaml
import numpy as np
def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None):
if type(image_path) is str:
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((512, 512)))
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype =torch.float16)
return image
def mu_tilde(model, xt,x0, timestep):
"mu_tilde(x_t, x_0) DDPM paper eq. 7"
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
alpha_t = model.scheduler.alphas[timestep]
beta_t = 1 - alpha_t
alpha_bar = model.scheduler.alphas_cumprod[timestep]
return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + ((alpha_t**0.5 *(1-alpha_prod_t_prev)) / (1- alpha_bar))*xt
def sample_xts_from_x0(model, x0, num_inference_steps=50):
"""
Samples from P(x_1:T|x_0)
"""
# torch.manual_seed(43256465436)
alpha_bar = model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
alphas = model.scheduler.alphas
betas = 1 - alphas
variance_noise_shape = (
num_inference_steps,
model.unet.in_channels,
model.unet.sample_size,
model.unet.sample_size)
timesteps = model.scheduler.timesteps.to(model.device)
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device, dtype =torch.float16)
for t in reversed(timesteps):
idx = t_to_idx[int(t)]
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0, dtype =torch.float16) * sqrt_one_minus_alpha_bar[t]
xts = torch.cat([xts, x0 ],dim = 0)
return xts
def encode_text(model, prompts):
text_input = model.tokenizer(
prompts,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
return text_encoding
def forward_step(model, model_output, timestep, sample):
next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
# alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 5. TODO: simple noising implementatiom
next_sample = model.scheduler.add_noise(pred_original_sample,
model_output,
torch.LongTensor([next_timestep]))
return next_sample
def get_variance(model, timestep): #, prev_timestep):
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def inversion_forward_process(model, x0,
etas = None,
prog_bar = False,
prompt = "",
cfg_scale = 3.5,
num_inference_steps=50, eps = None):
if not prompt=="":
text_embeddings = encode_text(model, prompt)
uncond_embedding = encode_text(model, "")
timesteps = model.scheduler.timesteps.to(model.device)
variance_noise_shape = (
num_inference_steps,
model.unet.in_channels,
model.unet.sample_size,
model.unet.sample_size)
if etas is None or (type(etas) in [int, float] and etas == 0):
eta_is_zero = True
zs = None
else:
eta_is_zero = False
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
alpha_bar = model.scheduler.alphas_cumprod
zs = torch.zeros(size=variance_noise_shape, device=model.device, dtype =torch.float16)
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
xt = x0
op = tqdm(reversed(timesteps), desc= "Inverting...") if prog_bar else reversed(timesteps)
for t in op:
idx = t_to_idx[int(t)]
# 1. predict noise residual
if not eta_is_zero:
xt = xts[idx][None]
with torch.no_grad():
out = model.unet.forward(xt, timestep = t, encoder_hidden_states = uncond_embedding)
if not prompt=="":
cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)
if not prompt=="":
## classifier free guidance
noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
else:
noise_pred = out.sample
if eta_is_zero:
# 2. compute more noisy image and set x_t -> x_t+1
xt = forward_step(model, noise_pred, t, xt)
else:
xtm1 = xts[idx+1][None]
# pred of x0
pred_original_sample = (xt - (1-alpha_bar[t]) ** 0.5 * noise_pred ) / alpha_bar[t] ** 0.5
# direction to xt
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
variance = get_variance(model, t)
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance ) ** (0.5) * noise_pred
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt ) / ( etas[idx] * variance ** 0.5 )
zs[idx] = z
# correction to avoid error accumulation
xtm1 = mu_xt + ( etas[idx] * variance ** 0.5 )*z
xts[idx+1] = xtm1
if not zs is None:
zs[-1] = torch.zeros_like(zs[-1])
return xt, zs, xts
def reverse_step(model, model_output, timestep, sample, eta = 0, variance_noise=None):
# 1. get previous step value (=t-1)
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = get_variance(model, timestep) #, prev_timestep)
std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
model_output_direction = model_output
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if variance_noise is None:
variance_noise = torch.randn(model_output.shape, device=model.device, dtype =torch.float16)
sigma_z = eta * variance ** (0.5) * variance_noise
prev_sample = prev_sample + sigma_z
return prev_sample
def inversion_reverse_process(model,
xT,
etas = 0,
prompts = "",
cfg_scales = None,
prog_bar = False,
zs = None,
controller=None,
asyrp = False):
batch_size = len(prompts)
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(model.device, dtype=torch.float16)
text_embeddings = encode_text(model, prompts)
uncond_embedding = encode_text(model, [""] * batch_size)
if etas is None: etas = 0
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
assert len(etas) == model.scheduler.num_inference_steps
timesteps = model.scheduler.timesteps.to(model.device)
xt = xT.expand(batch_size, -1, -1, -1)
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
for t in op:
idx = t_to_idx[int(t)]
## Unconditional embedding
with torch.no_grad():
uncond_out = model.unet.forward(xt, timestep = t,
encoder_hidden_states = uncond_embedding)
## Conditional embedding
if prompts:
with torch.no_grad():
cond_out = model.unet.forward(xt, timestep = t,
encoder_hidden_states = text_embeddings)
z = zs[idx] if not zs is None else None
z = z.expand(batch_size, -1, -1, -1)
if prompts:
## classifier free guidance
noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
else:
noise_pred = uncond_out.sample
# 2. compute less noisy image and set x_t -> x_t-1
xt = reverse_step(model, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
if controller is not None:
xt = controller.step_callback(xt)
return xt, zs