Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
4b8437d
1
Parent(s):
3e64644
Upload folder using huggingface_hub
Browse files- app.py +297 -0
- cog_sdxl_dataset_and_utils.py +422 -0
- images/3d_style_4.jpeg +0 -0
- images/LineAni.Redmond.png +0 -0
- images/LogoRedmond-LogoLoraForSDXL.jpeg +0 -0
- images/ToyRedmond-ToyLoraForSDXL10.png +0 -0
- images/corgi_brick.jpeg +0 -0
- images/crayon.png +0 -0
- images/dog.png +0 -0
- images/embroid.png +0 -0
- images/jojoso1.jpg +0 -0
- images/josef_koudelka.webp +0 -0
- images/lego-minifig-xl.jpeg +0 -0
- images/papercut_SDXL.jpeg +0 -0
- images/pikachu.webp +0 -0
- images/pixel-art-xl.jpeg +0 -0
- images/riding-min.jpg +0 -0
- images/the_fish.jpg +0 -0
- images/uglysonic.webp +0 -0
- images/voxel-xl-lora.png +0 -0
- images/watercolor.png +0 -0
- images/william_eggleston.webp +0 -0
- pipeline_semantic_stable_diffusion_xl_img2img_ddpm.py +1758 -0
app.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
import random
|
6 |
+
from io import BytesIO
|
7 |
+
from utils import *
|
8 |
+
from constants import *
|
9 |
+
from pipeline_semantic_stable_diffusion_xl_img2img_ddpm import *
|
10 |
+
from torch import inference_mode
|
11 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL
|
12 |
+
from diffusers import DDIMScheduler
|
13 |
+
from share_btn import community_icon_html, loading_icon_html, share_js
|
14 |
+
import torch
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
from diffusers import DiffusionPipeline
|
17 |
+
from cog_sdxl.dataset_and_utils import TokenEmbeddingsHandler
|
18 |
+
import json
|
19 |
+
from safetensors.torch import load_file
|
20 |
+
import lora
|
21 |
+
import copy
|
22 |
+
import json
|
23 |
+
import gc
|
24 |
+
import random
|
25 |
+
|
26 |
+
with open("sdxl_loras.json", "r") as file:
|
27 |
+
data = json.load(file)
|
28 |
+
sdxl_loras_raw = [
|
29 |
+
{
|
30 |
+
"image": item["image"],
|
31 |
+
"title": item["title"],
|
32 |
+
"repo": item["repo"],
|
33 |
+
"trigger_word": item["trigger_word"],
|
34 |
+
"weights": item["weights"],
|
35 |
+
"is_compatible": item["is_compatible"],
|
36 |
+
"is_pivotal": item.get("is_pivotal", False),
|
37 |
+
"text_embedding_weights": item.get("text_embedding_weights", None),
|
38 |
+
# "likes": item.get("likes", 0),
|
39 |
+
# "downloads": item.get("downloads", 0),
|
40 |
+
"is_nc": item.get("is_nc", False),
|
41 |
+
"edit_guidance_scale": item["edit_guidance_scale"],
|
42 |
+
"threshold": item["threshold"]
|
43 |
+
}
|
44 |
+
for item in data
|
45 |
+
]
|
46 |
+
|
47 |
+
state_dicts = {}
|
48 |
+
|
49 |
+
for item in sdxl_loras_raw:
|
50 |
+
saved_name = hf_hub_download(item["repo"], item["weights"])
|
51 |
+
if not saved_name.endswith('.safetensors'):
|
52 |
+
state_dict = torch.load(saved_name)
|
53 |
+
else:
|
54 |
+
state_dict = load_file(saved_name)
|
55 |
+
|
56 |
+
state_dicts[item["repo"]] = {
|
57 |
+
"saved_name": saved_name,
|
58 |
+
"state_dict": state_dict
|
59 |
+
} | item
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
sd_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
64 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
66 |
+
sd_pipe = SemanticStableDiffusionXLImg2ImgPipeline_DDPMInversion.from_pretrained(sd_model_id,
|
67 |
+
torch_dtype=torch.float16, variant="fp16", use_safetensors=True,vae=vae,
|
68 |
+
)
|
69 |
+
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
70 |
+
|
71 |
+
original_pipe = copy.deepcopy(sd_pipe)
|
72 |
+
sd_pipe.to(device)
|
73 |
+
|
74 |
+
last_lora = ""
|
75 |
+
last_merged = False
|
76 |
+
last_fused = False
|
77 |
+
|
78 |
+
|
79 |
+
def load_lora(sdxl_loras, lora_scale = 1.0, progress=gr.Progress(track_tqdm=True)):
|
80 |
+
global last_lora, last_merged, last_fused, sd_pipe
|
81 |
+
|
82 |
+
randomize()
|
83 |
+
random_lora_index = random.randrange(0, len(sdxl_loras), 1)
|
84 |
+
|
85 |
+
repo_name = sdxl_loras[random_lora_index]["repo"]
|
86 |
+
weight_name = sdxl_loras[random_lora_index]["weights"]
|
87 |
+
|
88 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
89 |
+
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
90 |
+
cross_attention_kwargs = None
|
91 |
+
print(repo_name)
|
92 |
+
if last_lora != repo_name:
|
93 |
+
if last_merged:
|
94 |
+
del sd_pipe
|
95 |
+
gc.collect()
|
96 |
+
sd_pipe = copy.deepcopy(original_pipe)
|
97 |
+
sd_pipe.to(device)
|
98 |
+
elif(last_fused):
|
99 |
+
sd_pipe.unfuse_lora()
|
100 |
+
sd_pipe.unload_lora_weights()
|
101 |
+
is_compatible = sdxl_loras[random_lora_index]["is_compatible"]
|
102 |
+
|
103 |
+
if is_compatible:
|
104 |
+
sd_pipe.load_lora_weights(loaded_state_dict)
|
105 |
+
sd_pipe.fuse_lora(lora_scale)
|
106 |
+
last_fused = True
|
107 |
+
else:
|
108 |
+
is_pivotal = sdxl_loras[random_lora_index]["is_pivotal"]
|
109 |
+
if(is_pivotal):
|
110 |
+
sd_pipe.load_lora_weights(loaded_state_dict)
|
111 |
+
sd_pipe.fuse_lora(lora_scale)
|
112 |
+
last_fused = True
|
113 |
+
|
114 |
+
#Add the textual inversion embeddings from pivotal tuning models
|
115 |
+
text_embedding_name = sdxl_loras[random_lora_index]["text_embedding_weights"]
|
116 |
+
text_encoders = [sd_pipe.text_encoder, sd_pipe.text_encoder_2]
|
117 |
+
tokenizers = [sd_pipe.tokenizer, sd_pipe.tokenizer_2]
|
118 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
119 |
+
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
|
120 |
+
embhandler.load_embeddings(embedding_path)
|
121 |
+
|
122 |
+
else:
|
123 |
+
merge_incompatible_lora(full_path_lora, lora_scale)
|
124 |
+
last_fused = False
|
125 |
+
last_merged = True
|
126 |
+
print("DONE")
|
127 |
+
return random_lora_index
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
## SEGA ##
|
132 |
+
|
133 |
+
def edit(sdxl_loras,
|
134 |
+
input_image,
|
135 |
+
wts, zs,
|
136 |
+
do_inversion,
|
137 |
+
|
138 |
+
):
|
139 |
+
show_share_button = gr.update(visible=True)
|
140 |
+
|
141 |
+
random_lora_index = load_lora(sdxl_loras)
|
142 |
+
|
143 |
+
src_prompt = ""
|
144 |
+
skip = 18
|
145 |
+
steps = 50
|
146 |
+
tar_cfg_scale = 15
|
147 |
+
src_cfg_scale = 3.5
|
148 |
+
tar_prompt = ""
|
149 |
+
|
150 |
+
if do_inversion:
|
151 |
+
image = load_image(input_image, device=device).to(torch.float16)
|
152 |
+
with inference_mode():
|
153 |
+
x0 = sd_pipe.vae.encode(image).latent_dist.sample() * sd_pipe.vae.config.scaling_factor
|
154 |
+
# invert and retrieve noise maps and latent
|
155 |
+
zs_tensor, wts_tensor = sd_pipe.invert(x0,
|
156 |
+
source_prompt= src_prompt,
|
157 |
+
# source_prompt_2 = None,
|
158 |
+
source_guidance_scale = src_cfg_scale,
|
159 |
+
negative_prompt = "blurry, ugly, bad quality",
|
160 |
+
# negative_prompt_2 = None,
|
161 |
+
num_inversion_steps = steps,
|
162 |
+
skip_steps = skip,
|
163 |
+
# eta = 1.0,
|
164 |
+
)
|
165 |
+
|
166 |
+
wts = gr.State(value=wts_tensor)
|
167 |
+
zs = gr.State(value=zs_tensor)
|
168 |
+
do_inversion = False
|
169 |
+
|
170 |
+
|
171 |
+
latnets = wts.value[skip].expand(1, -1, -1, -1)
|
172 |
+
|
173 |
+
editing_prompt = [sdxl_loras[random_lora_index]["trigger_word"]]
|
174 |
+
reverse_editing_direction = [False]
|
175 |
+
edit_warmup_steps = [2]
|
176 |
+
edit_guidance_scale = [sdxl_loras[random_lora_index]["edit_guidance_scale"]]
|
177 |
+
edit_threshold = [sdxl_loras[random_lora_index]["threshold"]]
|
178 |
+
|
179 |
+
|
180 |
+
editing_args = dict(
|
181 |
+
editing_prompt = editing_prompt,
|
182 |
+
reverse_editing_direction = reverse_editing_direction,
|
183 |
+
edit_warmup_steps=edit_warmup_steps,
|
184 |
+
edit_guidance_scale=edit_guidance_scale,
|
185 |
+
edit_threshold=edit_threshold,
|
186 |
+
edit_momentum_scale=0.3,
|
187 |
+
edit_mom_beta=0.6,
|
188 |
+
eta=1,)
|
189 |
+
|
190 |
+
sega_out = sd_pipe(prompt=tar_prompt, latents=latnets, guidance_scale = tar_cfg_scale,
|
191 |
+
# num_images_per_prompt=1,
|
192 |
+
# num_inference_steps=steps,
|
193 |
+
wts=wts.value, zs=zs.value[skip:], **editing_args)
|
194 |
+
|
195 |
+
lora_repo = sdxl_loras[random_lora_index]["repo"]
|
196 |
+
lora_desc = f"### LoRA Used To Edit this Image: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[random_lora_index]['is_nc'] else '' }"
|
197 |
+
lora_image = sdxl_loras[random_lora_index]["image"]
|
198 |
+
|
199 |
+
return sega_out.images[0], wts, zs, do_inversion, lora_image, lora_desc, gr.update(visible=True), gr.update(visible=True)
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
def randomize_seed_fn(seed, randomize_seed):
|
205 |
+
if randomize_seed:
|
206 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
207 |
+
torch.manual_seed(seed)
|
208 |
+
return seed
|
209 |
+
|
210 |
+
def randomize():
|
211 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
212 |
+
torch.manual_seed(seed)
|
213 |
+
torch.cuda.manual_seed(seed)
|
214 |
+
random.seed(seed)
|
215 |
+
np.random.seed(seed)
|
216 |
+
|
217 |
+
|
218 |
+
def crop_image(image):
|
219 |
+
h, w, c = image.shape
|
220 |
+
if h < w:
|
221 |
+
offset = (w - h) // 2
|
222 |
+
image = image[:, offset:offset + h]
|
223 |
+
elif w < h:
|
224 |
+
offset = (h - w) // 2
|
225 |
+
image = image[offset:offset + w]
|
226 |
+
image = np.array(Image.fromarray(image).resize((1024, 1024)))
|
227 |
+
return image
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
########
|
233 |
+
# demo #
|
234 |
+
########
|
235 |
+
|
236 |
+
with gr.Blocks(css="style.css") as demo:
|
237 |
+
|
238 |
+
|
239 |
+
def reset_do_inversion():
|
240 |
+
return True
|
241 |
+
|
242 |
+
|
243 |
+
gr.HTML(
|
244 |
+
"""<h1><img src="https://i.imgur.com/jpMRW5y.png" alt="LEDITS LoRA Photobooth"></h1>""",
|
245 |
+
)
|
246 |
+
wts = gr.State()
|
247 |
+
zs = gr.State()
|
248 |
+
reconstruction = gr.State()
|
249 |
+
do_inversion = gr.State(value=True)
|
250 |
+
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
251 |
+
|
252 |
+
with gr.Row():
|
253 |
+
input_image = gr.Image(label="Input Image", interactive=True, source="webcam", height=512, width=512)
|
254 |
+
sega_edited_image = gr.Image(label=f"LEDITS Edited Image", interactive=False, elem_id="output_image", height=512, width=512)
|
255 |
+
# input_image.style(height=365, width=365)
|
256 |
+
# sega_edited_image.style(height=365, width=365)
|
257 |
+
|
258 |
+
with gr.Row():
|
259 |
+
lora_image = gr.Image(interactive=False, height=128, width=128, visible=False)
|
260 |
+
lora_desc = gr.HTML(visible=False)
|
261 |
+
|
262 |
+
|
263 |
+
with gr.Row():
|
264 |
+
run_button = gr.Button("Run again!", visible=True)
|
265 |
+
|
266 |
+
|
267 |
+
run_button.click(
|
268 |
+
fn=edit,
|
269 |
+
inputs=[gr_sdxl_loras,
|
270 |
+
input_image,
|
271 |
+
wts, zs,
|
272 |
+
do_inversion,
|
273 |
+
|
274 |
+
],
|
275 |
+
outputs=[sega_edited_image, wts, zs, do_inversion, lora_image, lora_desc, lora_image, lora_desc])
|
276 |
+
|
277 |
+
input_image.change(
|
278 |
+
fn = reset_do_inversion,
|
279 |
+
outputs = [do_inversion],
|
280 |
+
queue = False).then(
|
281 |
+
fn=edit,
|
282 |
+
inputs=[gr_sdxl_loras,
|
283 |
+
input_image,
|
284 |
+
wts, zs,
|
285 |
+
do_inversion,
|
286 |
+
|
287 |
+
|
288 |
+
],
|
289 |
+
outputs=[sega_edited_image, wts, zs, do_inversion, lora_image, lora_desc, lora_image, lora_desc]
|
290 |
+
)
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
demo.queue()
|
297 |
+
demo.launch(share=True)
|
cog_sdxl_dataset_and_utils.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import PIL
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
|
11 |
+
from PIL import Image
|
12 |
+
from safetensors import safe_open
|
13 |
+
from safetensors.torch import save_file
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_image(
|
19 |
+
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
|
20 |
+
) -> torch.Tensor:
|
21 |
+
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
22 |
+
arr = np.array(pil_image.convert("RGB"))
|
23 |
+
arr = arr.astype(np.float32) / 127.5 - 1
|
24 |
+
arr = np.transpose(arr, [2, 0, 1])
|
25 |
+
image = torch.from_numpy(arr).unsqueeze(0)
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def prepare_mask(
|
30 |
+
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
|
31 |
+
) -> torch.Tensor:
|
32 |
+
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
33 |
+
arr = np.array(pil_image.convert("L"))
|
34 |
+
arr = arr.astype(np.float32) / 255.0
|
35 |
+
arr = np.expand_dims(arr, 0)
|
36 |
+
image = torch.from_numpy(arr).unsqueeze(0)
|
37 |
+
return image
|
38 |
+
|
39 |
+
|
40 |
+
class PreprocessedDataset(Dataset):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
csv_path: str,
|
44 |
+
tokenizer_1,
|
45 |
+
tokenizer_2,
|
46 |
+
vae_encoder,
|
47 |
+
text_encoder_1=None,
|
48 |
+
text_encoder_2=None,
|
49 |
+
do_cache: bool = False,
|
50 |
+
size: int = 512,
|
51 |
+
text_dropout: float = 0.0,
|
52 |
+
scale_vae_latents: bool = True,
|
53 |
+
substitute_caption_map: Dict[str, str] = {},
|
54 |
+
):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.data = pd.read_csv(csv_path)
|
58 |
+
self.csv_path = csv_path
|
59 |
+
|
60 |
+
self.caption = self.data["caption"]
|
61 |
+
# make it lowercase
|
62 |
+
self.caption = self.caption.str.lower()
|
63 |
+
for key, value in substitute_caption_map.items():
|
64 |
+
self.caption = self.caption.str.replace(key.lower(), value)
|
65 |
+
|
66 |
+
self.image_path = self.data["image_path"]
|
67 |
+
|
68 |
+
if "mask_path" not in self.data.columns:
|
69 |
+
self.mask_path = None
|
70 |
+
else:
|
71 |
+
self.mask_path = self.data["mask_path"]
|
72 |
+
|
73 |
+
if text_encoder_1 is None:
|
74 |
+
self.return_text_embeddings = False
|
75 |
+
else:
|
76 |
+
self.text_encoder_1 = text_encoder_1
|
77 |
+
self.text_encoder_2 = text_encoder_2
|
78 |
+
self.return_text_embeddings = True
|
79 |
+
assert (
|
80 |
+
NotImplementedError
|
81 |
+
), "Preprocessing Text Encoder is not implemented yet"
|
82 |
+
|
83 |
+
self.tokenizer_1 = tokenizer_1
|
84 |
+
self.tokenizer_2 = tokenizer_2
|
85 |
+
|
86 |
+
self.vae_encoder = vae_encoder
|
87 |
+
self.scale_vae_latents = scale_vae_latents
|
88 |
+
self.text_dropout = text_dropout
|
89 |
+
|
90 |
+
self.size = size
|
91 |
+
|
92 |
+
if do_cache:
|
93 |
+
self.vae_latents = []
|
94 |
+
self.tokens_tuple = []
|
95 |
+
self.masks = []
|
96 |
+
|
97 |
+
self.do_cache = True
|
98 |
+
|
99 |
+
print("Captions to train on: ")
|
100 |
+
for idx in range(len(self.data)):
|
101 |
+
token, vae_latent, mask = self._process(idx)
|
102 |
+
self.vae_latents.append(vae_latent)
|
103 |
+
self.tokens_tuple.append(token)
|
104 |
+
self.masks.append(mask)
|
105 |
+
|
106 |
+
del self.vae_encoder
|
107 |
+
|
108 |
+
else:
|
109 |
+
self.do_cache = False
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def _process(
|
113 |
+
self, idx: int
|
114 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
115 |
+
image_path = self.image_path[idx]
|
116 |
+
image_path = os.path.join(os.path.dirname(self.csv_path), image_path)
|
117 |
+
|
118 |
+
image = PIL.Image.open(image_path).convert("RGB")
|
119 |
+
image = prepare_image(image, self.size, self.size).to(
|
120 |
+
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
121 |
+
)
|
122 |
+
|
123 |
+
caption = self.caption[idx]
|
124 |
+
|
125 |
+
print(caption)
|
126 |
+
|
127 |
+
# tokenizer_1
|
128 |
+
ti1 = self.tokenizer_1(
|
129 |
+
caption,
|
130 |
+
padding="max_length",
|
131 |
+
max_length=77,
|
132 |
+
truncation=True,
|
133 |
+
add_special_tokens=True,
|
134 |
+
return_tensors="pt",
|
135 |
+
).input_ids
|
136 |
+
|
137 |
+
ti2 = self.tokenizer_2(
|
138 |
+
caption,
|
139 |
+
padding="max_length",
|
140 |
+
max_length=77,
|
141 |
+
truncation=True,
|
142 |
+
add_special_tokens=True,
|
143 |
+
return_tensors="pt",
|
144 |
+
).input_ids
|
145 |
+
|
146 |
+
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
|
147 |
+
|
148 |
+
if self.scale_vae_latents:
|
149 |
+
vae_latent = vae_latent * self.vae_encoder.config.scaling_factor
|
150 |
+
|
151 |
+
if self.mask_path is None:
|
152 |
+
mask = torch.ones_like(
|
153 |
+
vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
154 |
+
)
|
155 |
+
|
156 |
+
else:
|
157 |
+
mask_path = self.mask_path[idx]
|
158 |
+
mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path)
|
159 |
+
|
160 |
+
mask = PIL.Image.open(mask_path)
|
161 |
+
mask = prepare_mask(mask, self.size, self.size).to(
|
162 |
+
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
163 |
+
)
|
164 |
+
|
165 |
+
mask = torch.nn.functional.interpolate(
|
166 |
+
mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest"
|
167 |
+
)
|
168 |
+
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
|
169 |
+
|
170 |
+
assert len(mask.shape) == 4 and len(vae_latent.shape) == 4
|
171 |
+
|
172 |
+
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
|
173 |
+
|
174 |
+
def __len__(self) -> int:
|
175 |
+
return len(self.data)
|
176 |
+
|
177 |
+
def atidx(
|
178 |
+
self, idx: int
|
179 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
180 |
+
if self.do_cache:
|
181 |
+
return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]
|
182 |
+
else:
|
183 |
+
return self._process(idx)
|
184 |
+
|
185 |
+
def __getitem__(
|
186 |
+
self, idx: int
|
187 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
188 |
+
token, vae_latent, mask = self.atidx(idx)
|
189 |
+
return token, vae_latent, mask
|
190 |
+
|
191 |
+
|
192 |
+
def import_model_class_from_model_name_or_path(
|
193 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
194 |
+
):
|
195 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
196 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
197 |
+
)
|
198 |
+
model_class = text_encoder_config.architectures[0]
|
199 |
+
|
200 |
+
if model_class == "CLIPTextModel":
|
201 |
+
from transformers import CLIPTextModel
|
202 |
+
|
203 |
+
return CLIPTextModel
|
204 |
+
elif model_class == "CLIPTextModelWithProjection":
|
205 |
+
from transformers import CLIPTextModelWithProjection
|
206 |
+
|
207 |
+
return CLIPTextModelWithProjection
|
208 |
+
else:
|
209 |
+
raise ValueError(f"{model_class} is not supported.")
|
210 |
+
|
211 |
+
|
212 |
+
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
|
213 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
214 |
+
pretrained_model_name_or_path,
|
215 |
+
subfolder="tokenizer",
|
216 |
+
revision=revision,
|
217 |
+
use_fast=False,
|
218 |
+
)
|
219 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
220 |
+
pretrained_model_name_or_path,
|
221 |
+
subfolder="tokenizer_2",
|
222 |
+
revision=revision,
|
223 |
+
use_fast=False,
|
224 |
+
)
|
225 |
+
|
226 |
+
# Load scheduler and models
|
227 |
+
noise_scheduler = DDPMScheduler.from_pretrained(
|
228 |
+
pretrained_model_name_or_path, subfolder="scheduler"
|
229 |
+
)
|
230 |
+
# import correct text encoder classes
|
231 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
232 |
+
pretrained_model_name_or_path, revision
|
233 |
+
)
|
234 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
235 |
+
pretrained_model_name_or_path, revision, subfolder="text_encoder_2"
|
236 |
+
)
|
237 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
238 |
+
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
239 |
+
)
|
240 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
241 |
+
pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision
|
242 |
+
)
|
243 |
+
|
244 |
+
vae = AutoencoderKL.from_pretrained(
|
245 |
+
pretrained_model_name_or_path, subfolder="vae", revision=revision
|
246 |
+
)
|
247 |
+
unet = UNet2DConditionModel.from_pretrained(
|
248 |
+
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
249 |
+
)
|
250 |
+
|
251 |
+
vae.requires_grad_(False)
|
252 |
+
text_encoder_one.requires_grad_(False)
|
253 |
+
text_encoder_two.requires_grad_(False)
|
254 |
+
|
255 |
+
unet.to(device, dtype=weight_dtype)
|
256 |
+
vae.to(device, dtype=torch.float32)
|
257 |
+
text_encoder_one.to(device, dtype=weight_dtype)
|
258 |
+
text_encoder_two.to(device, dtype=weight_dtype)
|
259 |
+
|
260 |
+
return (
|
261 |
+
tokenizer_one,
|
262 |
+
tokenizer_two,
|
263 |
+
noise_scheduler,
|
264 |
+
text_encoder_one,
|
265 |
+
text_encoder_two,
|
266 |
+
vae,
|
267 |
+
unet,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
|
272 |
+
"""
|
273 |
+
Returns:
|
274 |
+
a state dict containing just the attention processor parameters.
|
275 |
+
"""
|
276 |
+
attn_processors = unet.attn_processors
|
277 |
+
|
278 |
+
attn_processors_state_dict = {}
|
279 |
+
|
280 |
+
for attn_processor_key, attn_processor in attn_processors.items():
|
281 |
+
for parameter_key, parameter in attn_processor.state_dict().items():
|
282 |
+
attn_processors_state_dict[
|
283 |
+
f"{attn_processor_key}.{parameter_key}"
|
284 |
+
] = parameter
|
285 |
+
|
286 |
+
return attn_processors_state_dict
|
287 |
+
|
288 |
+
|
289 |
+
class TokenEmbeddingsHandler:
|
290 |
+
def __init__(self, text_encoders, tokenizers):
|
291 |
+
self.text_encoders = text_encoders
|
292 |
+
self.tokenizers = tokenizers
|
293 |
+
|
294 |
+
self.train_ids: Optional[torch.Tensor] = None
|
295 |
+
self.inserting_toks: Optional[List[str]] = None
|
296 |
+
self.embeddings_settings = {}
|
297 |
+
|
298 |
+
def initialize_new_tokens(self, inserting_toks: List[str]):
|
299 |
+
idx = 0
|
300 |
+
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
|
301 |
+
assert isinstance(
|
302 |
+
inserting_toks, list
|
303 |
+
), "inserting_toks should be a list of strings."
|
304 |
+
assert all(
|
305 |
+
isinstance(tok, str) for tok in inserting_toks
|
306 |
+
), "All elements in inserting_toks should be strings."
|
307 |
+
|
308 |
+
self.inserting_toks = inserting_toks
|
309 |
+
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
|
310 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
311 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
312 |
+
|
313 |
+
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
|
314 |
+
|
315 |
+
# random initialization of new tokens
|
316 |
+
|
317 |
+
std_token_embedding = (
|
318 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data.std()
|
319 |
+
)
|
320 |
+
|
321 |
+
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
|
322 |
+
|
323 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
324 |
+
self.train_ids
|
325 |
+
] = (
|
326 |
+
torch.randn(
|
327 |
+
len(self.train_ids), text_encoder.text_model.config.hidden_size
|
328 |
+
)
|
329 |
+
.to(device=self.device)
|
330 |
+
.to(dtype=self.dtype)
|
331 |
+
* std_token_embedding
|
332 |
+
)
|
333 |
+
self.embeddings_settings[
|
334 |
+
f"original_embeddings_{idx}"
|
335 |
+
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
|
336 |
+
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
|
337 |
+
|
338 |
+
inu = torch.ones((len(tokenizer),), dtype=torch.bool)
|
339 |
+
inu[self.train_ids] = False
|
340 |
+
|
341 |
+
self.embeddings_settings[f"index_no_updates_{idx}"] = inu
|
342 |
+
|
343 |
+
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)
|
344 |
+
|
345 |
+
idx += 1
|
346 |
+
|
347 |
+
def save_embeddings(self, file_path: str):
|
348 |
+
assert (
|
349 |
+
self.train_ids is not None
|
350 |
+
), "Initialize new tokens before saving embeddings."
|
351 |
+
tensors = {}
|
352 |
+
for idx, text_encoder in enumerate(self.text_encoders):
|
353 |
+
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[
|
354 |
+
0
|
355 |
+
] == len(self.tokenizers[0]), "Tokenizers should be the same."
|
356 |
+
new_token_embeddings = (
|
357 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
358 |
+
self.train_ids
|
359 |
+
]
|
360 |
+
)
|
361 |
+
tensors[f"text_encoders_{idx}"] = new_token_embeddings
|
362 |
+
|
363 |
+
save_file(tensors, file_path)
|
364 |
+
|
365 |
+
@property
|
366 |
+
def dtype(self):
|
367 |
+
return self.text_encoders[0].dtype
|
368 |
+
|
369 |
+
@property
|
370 |
+
def device(self):
|
371 |
+
return self.text_encoders[0].device
|
372 |
+
|
373 |
+
def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder):
|
374 |
+
# Assuming new tokens are of the format <s_i>
|
375 |
+
self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])]
|
376 |
+
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
|
377 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
378 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
379 |
+
|
380 |
+
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
|
381 |
+
assert self.train_ids is not None, "New tokens could not be converted to IDs."
|
382 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
383 |
+
self.train_ids
|
384 |
+
] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype)
|
385 |
+
|
386 |
+
@torch.no_grad()
|
387 |
+
def retract_embeddings(self):
|
388 |
+
for idx, text_encoder in enumerate(self.text_encoders):
|
389 |
+
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
|
390 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
391 |
+
index_no_updates
|
392 |
+
] = (
|
393 |
+
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
|
394 |
+
.to(device=text_encoder.device)
|
395 |
+
.to(dtype=text_encoder.dtype)
|
396 |
+
)
|
397 |
+
|
398 |
+
# for the parts that were updated, we need to normalize them
|
399 |
+
# to have the same std as before
|
400 |
+
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]
|
401 |
+
|
402 |
+
index_updates = ~index_no_updates
|
403 |
+
new_embeddings = (
|
404 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
405 |
+
index_updates
|
406 |
+
]
|
407 |
+
)
|
408 |
+
off_ratio = std_token_embedding / new_embeddings.std()
|
409 |
+
|
410 |
+
new_embeddings = new_embeddings * (off_ratio**0.1)
|
411 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
412 |
+
index_updates
|
413 |
+
] = new_embeddings
|
414 |
+
|
415 |
+
def load_embeddings(self, file_path: str):
|
416 |
+
with safe_open(file_path, framework="pt", device=self.device.type) as f:
|
417 |
+
for idx in range(len(self.text_encoders)):
|
418 |
+
text_encoder = self.text_encoders[idx]
|
419 |
+
tokenizer = self.tokenizers[idx]
|
420 |
+
|
421 |
+
loaded_embeddings = f.get_tensor(f"text_encoders_{idx}")
|
422 |
+
self._load_embeddings(loaded_embeddings, tokenizer, text_encoder)
|
images/3d_style_4.jpeg
ADDED
images/LineAni.Redmond.png
ADDED
images/LogoRedmond-LogoLoraForSDXL.jpeg
ADDED
images/ToyRedmond-ToyLoraForSDXL10.png
ADDED
images/corgi_brick.jpeg
ADDED
images/crayon.png
ADDED
images/dog.png
ADDED
images/embroid.png
ADDED
images/jojoso1.jpg
ADDED
images/josef_koudelka.webp
ADDED
images/lego-minifig-xl.jpeg
ADDED
images/papercut_SDXL.jpeg
ADDED
images/pikachu.webp
ADDED
images/pixel-art-xl.jpeg
ADDED
images/riding-min.jpg
ADDED
images/the_fish.jpg
ADDED
images/uglysonic.webp
ADDED
images/voxel-xl-lora.png
ADDED
images/watercolor.png
ADDED
images/william_eggleston.webp
ADDED
pipeline_semantic_stable_diffusion_xl_img2img_ddpm.py
ADDED
@@ -0,0 +1,1758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import os
|
17 |
+
#from itertools import repeat
|
18 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
19 |
+
import numpy as np
|
20 |
+
from PIL import Image
|
21 |
+
from tqdm import tqdm
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import math
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
27 |
+
|
28 |
+
from diffusers.image_processor import VaeImageProcessor
|
29 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
30 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
31 |
+
from diffusers.models.attention_processor import (
|
32 |
+
AttnProcessor2_0,
|
33 |
+
LoRAAttnProcessor2_0,
|
34 |
+
LoRAXFormersAttnProcessor,
|
35 |
+
XFormersAttnProcessor,
|
36 |
+
AttnProcessor,
|
37 |
+
Attention
|
38 |
+
)
|
39 |
+
from diffusers.schedulers import DDIMScheduler
|
40 |
+
from diffusers.utils import (
|
41 |
+
is_accelerate_available,
|
42 |
+
is_accelerate_version,
|
43 |
+
is_invisible_watermark_available,
|
44 |
+
logging,
|
45 |
+
# randn_tensor,
|
46 |
+
replace_example_docstring,
|
47 |
+
)
|
48 |
+
|
49 |
+
from diffusers.utils.torch_utils import randn_tensor
|
50 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
51 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
52 |
+
|
53 |
+
|
54 |
+
if is_invisible_watermark_available():
|
55 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
59 |
+
|
60 |
+
EXAMPLE_DOC_STRING = """
|
61 |
+
Examples:
|
62 |
+
```py
|
63 |
+
>>> import torch
|
64 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
65 |
+
|
66 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
67 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
68 |
+
... )
|
69 |
+
>>> pipe = pipe.to("cuda")
|
70 |
+
|
71 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
72 |
+
>>> image = pipe(prompt).images[0]
|
73 |
+
```
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
class AttentionStore():
|
78 |
+
@staticmethod
|
79 |
+
def get_empty_store():
|
80 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
81 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
82 |
+
|
83 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts):
|
84 |
+
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
|
85 |
+
bs = 2 + editing_prompts
|
86 |
+
source_batch_size = int(attn.shape[0] // bs)
|
87 |
+
skip = 1 # skip unconditional
|
88 |
+
self.forward(
|
89 |
+
attn[skip*source_batch_size:],
|
90 |
+
is_cross,
|
91 |
+
place_in_unet)
|
92 |
+
|
93 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
94 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
95 |
+
#print(f"{key} : {attn.shape[1]}")
|
96 |
+
self.step_store[key].append(attn)
|
97 |
+
|
98 |
+
def between_steps(self, store_step=True):
|
99 |
+
if store_step:
|
100 |
+
if self.average:
|
101 |
+
if len(self.attention_store) == 0:
|
102 |
+
self.attention_store = self.step_store
|
103 |
+
else:
|
104 |
+
for key in self.attention_store:
|
105 |
+
for i in range(len(self.attention_store[key])):
|
106 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
107 |
+
else:
|
108 |
+
if len(self.attention_store) == 0:
|
109 |
+
self.attention_store = [self.step_store]
|
110 |
+
else:
|
111 |
+
self.attention_store.append(self.step_store)
|
112 |
+
|
113 |
+
self.cur_step += 1
|
114 |
+
self.step_store = self.get_empty_store()
|
115 |
+
|
116 |
+
def get_attention(self, step: int):
|
117 |
+
if self.average:
|
118 |
+
attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
119 |
+
else:
|
120 |
+
assert(step is not None)
|
121 |
+
attention = self.attention_store[step]
|
122 |
+
return attention
|
123 |
+
|
124 |
+
def aggregate_attention(self, attention_maps, prompts, res: int,
|
125 |
+
from_where: List[str], is_cross: bool, select: int
|
126 |
+
):
|
127 |
+
out = []
|
128 |
+
num_pixels = res ** 2
|
129 |
+
for location in from_where:
|
130 |
+
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
131 |
+
if item.shape[1] == num_pixels:
|
132 |
+
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
|
133 |
+
out.append(cross_maps)
|
134 |
+
out = torch.cat(out, dim=0)
|
135 |
+
# average over heads
|
136 |
+
out = out.sum(0) / out.shape[0]
|
137 |
+
return out
|
138 |
+
|
139 |
+
def __init__(self, average: bool):
|
140 |
+
self.step_store = self.get_empty_store()
|
141 |
+
self.attention_store = []
|
142 |
+
self.cur_step = 0
|
143 |
+
self.average = average
|
144 |
+
|
145 |
+
class CrossAttnProcessor:
|
146 |
+
|
147 |
+
def __init__(self, attention_store, place_in_unet, editing_prompts):
|
148 |
+
self.attnstore = attention_store
|
149 |
+
self.place_in_unet = place_in_unet
|
150 |
+
self.editing_prompts = editing_prompts
|
151 |
+
|
152 |
+
def __call__(
|
153 |
+
self,
|
154 |
+
attn: Attention,
|
155 |
+
hidden_states,
|
156 |
+
encoder_hidden_states=None,
|
157 |
+
attention_mask=None,
|
158 |
+
temb=None,
|
159 |
+
):
|
160 |
+
assert(not attn.residual_connection)
|
161 |
+
assert(attn.spatial_norm is None)
|
162 |
+
assert(attn.group_norm is None)
|
163 |
+
assert(hidden_states.ndim != 4)
|
164 |
+
assert(encoder_hidden_states is not None) # is cross
|
165 |
+
|
166 |
+
batch_size, sequence_length, _ = (
|
167 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
168 |
+
)
|
169 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
170 |
+
|
171 |
+
query = attn.to_q(hidden_states)
|
172 |
+
|
173 |
+
if encoder_hidden_states is None:
|
174 |
+
encoder_hidden_states = hidden_states
|
175 |
+
elif attn.norm_cross:
|
176 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
177 |
+
|
178 |
+
key = attn.to_k(encoder_hidden_states)
|
179 |
+
value = attn.to_v(encoder_hidden_states)
|
180 |
+
|
181 |
+
query = attn.head_to_batch_dim(query)
|
182 |
+
key = attn.head_to_batch_dim(key)
|
183 |
+
value = attn.head_to_batch_dim(value)
|
184 |
+
|
185 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
186 |
+
self.attnstore(attention_probs,
|
187 |
+
is_cross=True,
|
188 |
+
place_in_unet=self.place_in_unet,
|
189 |
+
editing_prompts=self.editing_prompts)
|
190 |
+
|
191 |
+
hidden_states = torch.bmm(attention_probs, value)
|
192 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
193 |
+
|
194 |
+
# linear proj
|
195 |
+
hidden_states = attn.to_out[0](hidden_states)
|
196 |
+
# dropout
|
197 |
+
hidden_states = attn.to_out[1](hidden_states)
|
198 |
+
|
199 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
200 |
+
return hidden_states
|
201 |
+
|
202 |
+
|
203 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
|
204 |
+
class GaussianSmoothing():
|
205 |
+
|
206 |
+
def __init__(self, device):
|
207 |
+
kernel_size = [3, 3]
|
208 |
+
sigma = [0.5, 0.5]
|
209 |
+
|
210 |
+
# The gaussian kernel is the product of the gaussian function of each dimension.
|
211 |
+
kernel = 1
|
212 |
+
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
|
213 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
214 |
+
mean = (size - 1) / 2
|
215 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
|
216 |
+
|
217 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
218 |
+
kernel = kernel / torch.sum(kernel)
|
219 |
+
|
220 |
+
# Reshape to depthwise convolutional weight
|
221 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
222 |
+
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
|
223 |
+
|
224 |
+
self.weight = kernel.to(device)
|
225 |
+
|
226 |
+
def __call__(self, input):
|
227 |
+
"""
|
228 |
+
Arguments:
|
229 |
+
Apply gaussian filter to input.
|
230 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
231 |
+
Returns:
|
232 |
+
filtered (torch.Tensor): Filtered output.
|
233 |
+
"""
|
234 |
+
return F.conv2d(input, weight=self.weight.to(input.dtype))
|
235 |
+
|
236 |
+
|
237 |
+
def load_image(image_path, size=1024, left=0, right=0, top=0, bottom=0, device=None, dtype=None):
|
238 |
+
print(f"load image of size {size}x{size}")
|
239 |
+
if type(image_path) is str:
|
240 |
+
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
|
241 |
+
else:
|
242 |
+
image = image_path
|
243 |
+
h, w, c = image.shape
|
244 |
+
left = min(left, w-1)
|
245 |
+
right = min(right, w - left - 1)
|
246 |
+
top = min(top, h - left - 1)
|
247 |
+
bottom = min(bottom, h - top - 1)
|
248 |
+
image = image[top:h-bottom, left:w-right]
|
249 |
+
h, w, c = image.shape
|
250 |
+
if h < w:
|
251 |
+
offset = (w - h) // 2
|
252 |
+
image = image[:, offset:offset + h]
|
253 |
+
elif w < h:
|
254 |
+
offset = (h - w) // 2
|
255 |
+
image = image[offset:offset + w]
|
256 |
+
image = np.array(Image.fromarray(image).resize((size, size)))
|
257 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
258 |
+
image = image.permute(2, 0, 1).unsqueeze(0)
|
259 |
+
|
260 |
+
image = image.to(device=device, dtype=dtype)
|
261 |
+
return image
|
262 |
+
|
263 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
264 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
265 |
+
"""
|
266 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
267 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
268 |
+
"""
|
269 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
270 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
271 |
+
# rescale the results from guidance (fixes overexposure)
|
272 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
273 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
274 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
275 |
+
return noise_cfg
|
276 |
+
|
277 |
+
|
278 |
+
class SemanticStableDiffusionXLImg2ImgPipeline_DDPMInversion(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
279 |
+
r"""
|
280 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
281 |
+
|
282 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
283 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
284 |
+
|
285 |
+
In addition the pipeline inherits the following loading methods:
|
286 |
+
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
|
287 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
288 |
+
|
289 |
+
as well as the following saving methods:
|
290 |
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
291 |
+
|
292 |
+
Args:
|
293 |
+
vae ([`AutoencoderKL`]):
|
294 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
295 |
+
text_encoder ([`CLIPTextModel`]):
|
296 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
297 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
298 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
299 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
300 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
301 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
302 |
+
specifically the
|
303 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
304 |
+
variant.
|
305 |
+
tokenizer (`CLIPTokenizer`):
|
306 |
+
Tokenizer of class
|
307 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
308 |
+
tokenizer_2 (`CLIPTokenizer`):
|
309 |
+
Second Tokenizer of class
|
310 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
311 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
312 |
+
scheduler ([`SchedulerMixin`]):
|
313 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
314 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
315 |
+
"""
|
316 |
+
|
317 |
+
def __init__(
|
318 |
+
self,
|
319 |
+
vae: AutoencoderKL,
|
320 |
+
text_encoder: CLIPTextModel,
|
321 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
322 |
+
tokenizer: CLIPTokenizer,
|
323 |
+
tokenizer_2: CLIPTokenizer,
|
324 |
+
unet: UNet2DConditionModel,
|
325 |
+
scheduler: DDIMScheduler,
|
326 |
+
force_zeros_for_empty_prompt: bool = True,
|
327 |
+
add_watermarker: Optional[bool] = None,
|
328 |
+
):
|
329 |
+
super().__init__()
|
330 |
+
|
331 |
+
if not isinstance(scheduler, DDIMScheduler):
|
332 |
+
scheduler = DDIMScheduler.from_config(scheduler.config)
|
333 |
+
logger.warning("This pipeline only supports DDIMScheduler. "
|
334 |
+
"The scheduler has been changed to DDIMScheduler.")
|
335 |
+
|
336 |
+
self.register_modules(
|
337 |
+
vae=vae,
|
338 |
+
text_encoder=text_encoder,
|
339 |
+
text_encoder_2=text_encoder_2,
|
340 |
+
tokenizer=tokenizer,
|
341 |
+
tokenizer_2=tokenizer_2,
|
342 |
+
unet=unet,
|
343 |
+
scheduler=scheduler,
|
344 |
+
)
|
345 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
346 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
347 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
348 |
+
self.default_sample_size = self.unet.config.sample_size
|
349 |
+
|
350 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
351 |
+
|
352 |
+
if add_watermarker:
|
353 |
+
self.watermark = StableDiffusionXLWatermarker()
|
354 |
+
else:
|
355 |
+
self.watermark = None
|
356 |
+
|
357 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
358 |
+
def enable_vae_slicing(self):
|
359 |
+
r"""
|
360 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
361 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
362 |
+
"""
|
363 |
+
self.vae.enable_slicing()
|
364 |
+
|
365 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
366 |
+
def disable_vae_slicing(self):
|
367 |
+
r"""
|
368 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
369 |
+
computing decoding in one step.
|
370 |
+
"""
|
371 |
+
self.vae.disable_slicing()
|
372 |
+
|
373 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
374 |
+
def enable_vae_tiling(self):
|
375 |
+
r"""
|
376 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
377 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
378 |
+
processing larger images.
|
379 |
+
"""
|
380 |
+
self.vae.enable_tiling()
|
381 |
+
|
382 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
383 |
+
def disable_vae_tiling(self):
|
384 |
+
r"""
|
385 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
386 |
+
computing decoding in one step.
|
387 |
+
"""
|
388 |
+
self.vae.disable_tiling()
|
389 |
+
|
390 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
391 |
+
r"""
|
392 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
393 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
394 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
395 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
396 |
+
"""
|
397 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
398 |
+
from accelerate import cpu_offload_with_hook
|
399 |
+
else:
|
400 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
401 |
+
|
402 |
+
device = torch.device(f"cuda:{gpu_id}")
|
403 |
+
|
404 |
+
if self.device.type != "cpu":
|
405 |
+
self.to("cpu", silence_dtype_warnings=True)
|
406 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
407 |
+
|
408 |
+
model_sequence = (
|
409 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
410 |
+
)
|
411 |
+
model_sequence.extend([self.unet, self.vae])
|
412 |
+
|
413 |
+
hook = None
|
414 |
+
for cpu_offloaded_model in model_sequence:
|
415 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
416 |
+
|
417 |
+
# We'll offload the last model manually.
|
418 |
+
self.final_offload_hook = hook
|
419 |
+
|
420 |
+
def encode_prompt(
|
421 |
+
self,
|
422 |
+
prompt: str,
|
423 |
+
prompt_2: Optional[str] = None,
|
424 |
+
device: Optional[torch.device] = None,
|
425 |
+
num_images_per_prompt: int = 1,
|
426 |
+
do_classifier_free_guidance: bool = True,
|
427 |
+
negative_prompt: Optional[str] = None,
|
428 |
+
negative_prompt_2: Optional[str] = None,
|
429 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
430 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
431 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
432 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
433 |
+
lora_scale: Optional[float] = None,
|
434 |
+
enable_edit_guidance: bool = True,
|
435 |
+
editing_prompt: Optional[str] = None,
|
436 |
+
):
|
437 |
+
r"""
|
438 |
+
Encodes the prompt into text encoder hidden states.
|
439 |
+
|
440 |
+
Args:
|
441 |
+
prompt (`str` or `List[str]`, *optional*):
|
442 |
+
prompt to be encoded
|
443 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
444 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
445 |
+
used in both text-encoders
|
446 |
+
device: (`torch.device`):
|
447 |
+
torch device
|
448 |
+
num_images_per_prompt (`int`):
|
449 |
+
number of images that should be generated per prompt
|
450 |
+
do_classifier_free_guidance (`bool`):
|
451 |
+
whether to use classifier free guidance or not
|
452 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
453 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
454 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
455 |
+
less than `1`).
|
456 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
457 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
458 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
459 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
460 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
461 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
462 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
463 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
464 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
465 |
+
argument.
|
466 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
467 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
468 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
469 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
470 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
471 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
472 |
+
input argument.
|
473 |
+
lora_scale (`float`, *optional*):
|
474 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
475 |
+
"""
|
476 |
+
device = device or self._execution_device
|
477 |
+
|
478 |
+
# set lora scale so that monkey patched LoRA
|
479 |
+
# function of text encoder can correctly access it
|
480 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
481 |
+
self._lora_scale = lora_scale
|
482 |
+
|
483 |
+
if prompt is not None and isinstance(prompt, str):
|
484 |
+
batch_size = 1
|
485 |
+
elif prompt is not None and isinstance(prompt, list):
|
486 |
+
batch_size = len(prompt)
|
487 |
+
else:
|
488 |
+
batch_size = prompt_embeds.shape[0]
|
489 |
+
|
490 |
+
# Define tokenizers and text encoders
|
491 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
492 |
+
text_encoders = (
|
493 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
494 |
+
)
|
495 |
+
|
496 |
+
if prompt_embeds is None:
|
497 |
+
prompt_2 = prompt_2 or prompt
|
498 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
499 |
+
prompt_embeds_list = []
|
500 |
+
prompts = [prompt, prompt_2]
|
501 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
502 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
503 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
504 |
+
|
505 |
+
text_inputs = tokenizer(
|
506 |
+
prompt,
|
507 |
+
padding="max_length",
|
508 |
+
max_length=tokenizer.model_max_length,
|
509 |
+
truncation=True,
|
510 |
+
return_tensors="pt",
|
511 |
+
)
|
512 |
+
|
513 |
+
text_input_ids = text_inputs.input_ids
|
514 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
515 |
+
|
516 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
517 |
+
text_input_ids, untruncated_ids
|
518 |
+
):
|
519 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
520 |
+
logger.warning(
|
521 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
522 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
523 |
+
)
|
524 |
+
|
525 |
+
prompt_embeds = text_encoder(
|
526 |
+
text_input_ids.to(device),
|
527 |
+
output_hidden_states=True,
|
528 |
+
)
|
529 |
+
|
530 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
531 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
532 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
533 |
+
|
534 |
+
prompt_embeds_list.append(prompt_embeds)
|
535 |
+
|
536 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
537 |
+
|
538 |
+
# get unconditional embeddings for classifier free guidance
|
539 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
540 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
541 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
542 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
543 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
544 |
+
negative_prompt = negative_prompt or ""
|
545 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
546 |
+
|
547 |
+
uncond_tokens: List[str]
|
548 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
549 |
+
raise TypeError(
|
550 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
551 |
+
f" {type(prompt)}."
|
552 |
+
)
|
553 |
+
elif isinstance(negative_prompt, str):
|
554 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
555 |
+
elif batch_size != len(negative_prompt):
|
556 |
+
raise ValueError(
|
557 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
558 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
559 |
+
" the batch size of `prompt`."
|
560 |
+
)
|
561 |
+
else:
|
562 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
563 |
+
|
564 |
+
negative_prompt_embeds_list = []
|
565 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
566 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
567 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
568 |
+
|
569 |
+
max_length = prompt_embeds.shape[1]
|
570 |
+
uncond_input = tokenizer(
|
571 |
+
negative_prompt,
|
572 |
+
padding="max_length",
|
573 |
+
max_length=max_length,
|
574 |
+
truncation=True,
|
575 |
+
return_tensors="pt",
|
576 |
+
)
|
577 |
+
|
578 |
+
negative_prompt_embeds = text_encoder(
|
579 |
+
uncond_input.input_ids.to(device),
|
580 |
+
output_hidden_states=True,
|
581 |
+
)
|
582 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
583 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
584 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
585 |
+
|
586 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
587 |
+
|
588 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
589 |
+
|
590 |
+
num_edit_tokens = None
|
591 |
+
if enable_edit_guidance:
|
592 |
+
editing_prompt_2 = editing_prompt
|
593 |
+
|
594 |
+
editing_prompts = [editing_prompt, editing_prompt_2]
|
595 |
+
edit_prompt_embeds_list = []
|
596 |
+
|
597 |
+
for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
|
598 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
599 |
+
editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)
|
600 |
+
|
601 |
+
max_length = prompt_embeds.shape[1]
|
602 |
+
edit_concepts_input = tokenizer(
|
603 |
+
#[x for item in editing_prompt for x in repeat(item, batch_size)],
|
604 |
+
editing_prompt,
|
605 |
+
padding="max_length",
|
606 |
+
max_length=max_length,
|
607 |
+
truncation=True,
|
608 |
+
return_tensors="pt",
|
609 |
+
return_length=True
|
610 |
+
)
|
611 |
+
|
612 |
+
num_edit_tokens = edit_concepts_input.length -2 # not counting startoftext and endoftext
|
613 |
+
edit_concepts_input_ids = edit_concepts_input.input_ids
|
614 |
+
edit_concepts_embeds = text_encoder(
|
615 |
+
edit_concepts_input.input_ids.to(device),
|
616 |
+
output_hidden_states=True,
|
617 |
+
)
|
618 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
619 |
+
edit_pooled_prompt_embeds = edit_concepts_embeds[0]
|
620 |
+
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
|
621 |
+
|
622 |
+
edit_prompt_embeds_list.append(edit_concepts_embeds)
|
623 |
+
|
624 |
+
edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
|
625 |
+
else:
|
626 |
+
edit_concepts_embeds = None
|
627 |
+
edit_pooled_prompt_embeds = None
|
628 |
+
|
629 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
630 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
631 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
632 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
633 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
634 |
+
|
635 |
+
if do_classifier_free_guidance:
|
636 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
637 |
+
seq_len = negative_prompt_embeds.shape[1]
|
638 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
639 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
640 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
641 |
+
|
642 |
+
if enable_edit_guidance:
|
643 |
+
bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
|
644 |
+
edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
645 |
+
edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
|
646 |
+
edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
|
647 |
+
|
648 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
649 |
+
bs_embed * num_images_per_prompt, -1
|
650 |
+
)
|
651 |
+
if do_classifier_free_guidance:
|
652 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
653 |
+
bs_embed * num_images_per_prompt, -1
|
654 |
+
)
|
655 |
+
|
656 |
+
if enable_edit_guidance:
|
657 |
+
edit_pooled_prompt_embeds = edit_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
658 |
+
bs_embed_edit * num_images_per_prompt, -1
|
659 |
+
)
|
660 |
+
|
661 |
+
return (prompt_embeds, negative_prompt_embeds, edit_concepts_embeds,
|
662 |
+
pooled_prompt_embeds, negative_pooled_prompt_embeds, edit_pooled_prompt_embeds,
|
663 |
+
num_edit_tokens)
|
664 |
+
|
665 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
666 |
+
def prepare_extra_step_kwargs(self, eta):
|
667 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
668 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
669 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
670 |
+
# and should be between [0, 1]
|
671 |
+
|
672 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
673 |
+
extra_step_kwargs = {}
|
674 |
+
if accepts_eta:
|
675 |
+
extra_step_kwargs["eta"] = eta
|
676 |
+
|
677 |
+
return extra_step_kwargs
|
678 |
+
|
679 |
+
def check_inputs(
|
680 |
+
self,
|
681 |
+
prompt,
|
682 |
+
prompt_2,
|
683 |
+
height,
|
684 |
+
width,
|
685 |
+
callback_steps,
|
686 |
+
negative_prompt=None,
|
687 |
+
negative_prompt_2=None,
|
688 |
+
prompt_embeds=None,
|
689 |
+
negative_prompt_embeds=None,
|
690 |
+
pooled_prompt_embeds=None,
|
691 |
+
negative_pooled_prompt_embeds=None,
|
692 |
+
):
|
693 |
+
if height % 8 != 0 or width % 8 != 0:
|
694 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
695 |
+
|
696 |
+
if (callback_steps is None) or (
|
697 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
698 |
+
):
|
699 |
+
raise ValueError(
|
700 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
701 |
+
f" {type(callback_steps)}."
|
702 |
+
)
|
703 |
+
|
704 |
+
if prompt is not None and prompt_embeds is not None:
|
705 |
+
raise ValueError(
|
706 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
707 |
+
" only forward one of the two."
|
708 |
+
)
|
709 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
710 |
+
raise ValueError(
|
711 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
712 |
+
" only forward one of the two."
|
713 |
+
)
|
714 |
+
elif prompt is None and prompt_embeds is None:
|
715 |
+
raise ValueError(
|
716 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
717 |
+
)
|
718 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
719 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
720 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
721 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
722 |
+
|
723 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
724 |
+
raise ValueError(
|
725 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
726 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
727 |
+
)
|
728 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
729 |
+
raise ValueError(
|
730 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
731 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
732 |
+
)
|
733 |
+
|
734 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
735 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
736 |
+
raise ValueError(
|
737 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
738 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
739 |
+
f" {negative_prompt_embeds.shape}."
|
740 |
+
)
|
741 |
+
|
742 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
743 |
+
raise ValueError(
|
744 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
745 |
+
)
|
746 |
+
|
747 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
748 |
+
raise ValueError(
|
749 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
750 |
+
)
|
751 |
+
|
752 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
753 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
|
754 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
755 |
+
|
756 |
+
if latents.shape != shape:
|
757 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
758 |
+
|
759 |
+
latents = latents.to(device)
|
760 |
+
|
761 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
762 |
+
latents = latents * self.scheduler.init_noise_sigma
|
763 |
+
return latents
|
764 |
+
|
765 |
+
def prepare_unet(self, attention_store, enabled_editing_prompts):
|
766 |
+
attn_procs = {}
|
767 |
+
for name in self.unet.attn_processors.keys():
|
768 |
+
if name.startswith("mid_block"):
|
769 |
+
place_in_unet = "mid"
|
770 |
+
elif name.startswith("up_blocks"):
|
771 |
+
place_in_unet = "up"
|
772 |
+
elif name.startswith("down_blocks"):
|
773 |
+
place_in_unet = "down"
|
774 |
+
else:
|
775 |
+
continue
|
776 |
+
|
777 |
+
if "attn2" in name:
|
778 |
+
attn_procs[name] = CrossAttnProcessor(
|
779 |
+
attention_store=attention_store,
|
780 |
+
place_in_unet=place_in_unet,
|
781 |
+
editing_prompts=enabled_editing_prompts)
|
782 |
+
else:
|
783 |
+
attn_procs[name] = AttnProcessor()
|
784 |
+
|
785 |
+
self.unet.set_attn_processor(attn_procs)
|
786 |
+
|
787 |
+
|
788 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
789 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
790 |
+
|
791 |
+
passed_add_embed_dim = (
|
792 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
793 |
+
)
|
794 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
795 |
+
|
796 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
797 |
+
raise ValueError(
|
798 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
799 |
+
)
|
800 |
+
|
801 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
802 |
+
return add_time_ids
|
803 |
+
|
804 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
805 |
+
def upcast_vae(self):
|
806 |
+
dtype = self.vae.dtype
|
807 |
+
self.vae.to(dtype=torch.float32)
|
808 |
+
use_torch_2_0_or_xformers = isinstance(
|
809 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
810 |
+
(
|
811 |
+
AttnProcessor2_0,
|
812 |
+
XFormersAttnProcessor,
|
813 |
+
LoRAXFormersAttnProcessor,
|
814 |
+
LoRAAttnProcessor2_0,
|
815 |
+
),
|
816 |
+
)
|
817 |
+
# if xformers or torch_2_0 is used attention block does not need
|
818 |
+
# to be in float32 which can save lots of memory
|
819 |
+
if use_torch_2_0_or_xformers:
|
820 |
+
self.vae.post_quant_conv.to(dtype)
|
821 |
+
self.vae.decoder.conv_in.to(dtype)
|
822 |
+
self.vae.decoder.mid_block.to(dtype)
|
823 |
+
|
824 |
+
@torch.no_grad()
|
825 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
826 |
+
def __call__(
|
827 |
+
self,
|
828 |
+
prompt: Union[str, List[str]] = None,
|
829 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
830 |
+
height: Optional[int] = None,
|
831 |
+
width: Optional[int] = None,
|
832 |
+
#num_inference_steps: int = 50,
|
833 |
+
#denoising_end: Optional[float] = None,
|
834 |
+
guidance_scale: float = 5.0,
|
835 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
836 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
837 |
+
#num_images_per_prompt: Optional[int] = 1,
|
838 |
+
eta: float = 1.0,
|
839 |
+
#generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
840 |
+
latents: Optional[torch.FloatTensor] = None,
|
841 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
842 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
843 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
844 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
845 |
+
output_type: Optional[str] = "pil",
|
846 |
+
return_dict: bool = True,
|
847 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
848 |
+
callback_steps: int = 1,
|
849 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
850 |
+
guidance_rescale: float = 0.0,
|
851 |
+
original_size: Optional[Tuple[int, int]] = None,
|
852 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
853 |
+
target_size: Optional[Tuple[int, int]] = None,
|
854 |
+
editing_prompt: Optional[Union[str, List[str]]] = None,
|
855 |
+
editing_prompt_embeddings: Optional[torch.Tensor] = None,
|
856 |
+
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
|
857 |
+
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
|
858 |
+
edit_warmup_steps: Optional[Union[int, List[int]]] = 10,
|
859 |
+
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
860 |
+
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
861 |
+
edit_momentum_scale: Optional[float] = 0.1,
|
862 |
+
edit_mom_beta: Optional[float] = 0.4,
|
863 |
+
edit_weights: Optional[List[float]] = None,
|
864 |
+
sem_guidance: Optional[List[torch.Tensor]] = None,
|
865 |
+
user_mask: Optional[torch.FloatTensor] = None,
|
866 |
+
use_cross_attn_mask: bool = False,
|
867 |
+
# Attention store (just for visualization purposes)
|
868 |
+
attn_store_steps: Optional[List[int]] = [],
|
869 |
+
store_averaged_over_steps: bool = True,
|
870 |
+
|
871 |
+
zs: Optional[torch.FloatTensor] = None,
|
872 |
+
wts: Optional[torch.FloatTensor] = None,
|
873 |
+
):
|
874 |
+
r"""
|
875 |
+
Function invoked when calling the pipeline for generation.
|
876 |
+
|
877 |
+
Args:
|
878 |
+
prompt (`str` or `List[str]`, *optional*):
|
879 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
880 |
+
instead.
|
881 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
882 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
883 |
+
used in both text-encoders
|
884 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
885 |
+
The height in pixels of the generated image.
|
886 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
887 |
+
The width in pixels of the generated image.
|
888 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
889 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
890 |
+
expense of slower inference.
|
891 |
+
denoising_end (`float`, *optional*):
|
892 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
893 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
894 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
895 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
896 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
897 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
898 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
899 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
900 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
901 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
902 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
903 |
+
usually at the expense of lower image quality.
|
904 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
905 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
906 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
907 |
+
less than `1`).
|
908 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
909 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
910 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
911 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
912 |
+
The number of images to generate per prompt.
|
913 |
+
eta (`float`, *optional*, defaults to 0.0):
|
914 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
915 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
916 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
917 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
918 |
+
to make generation deterministic.
|
919 |
+
latents (`torch.FloatTensor`, *optional*):
|
920 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
921 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
922 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
923 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
924 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
925 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
926 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
927 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
928 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
929 |
+
argument.
|
930 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
931 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
932 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
933 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
934 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
935 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
936 |
+
input argument.
|
937 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
938 |
+
The output format of the generate image. Choose between
|
939 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
940 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
941 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
942 |
+
of a plain tuple.
|
943 |
+
callback (`Callable`, *optional*):
|
944 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
945 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
946 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
947 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
948 |
+
called at every step.
|
949 |
+
cross_attention_kwargs (`dict`, *optional*):
|
950 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
951 |
+
`self.processor` in
|
952 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
953 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
954 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
955 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
956 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
957 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
958 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
959 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
960 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
961 |
+
explained in section 2.2 of
|
962 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
963 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
964 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
965 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
966 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
967 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
968 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
969 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
970 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
971 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
972 |
+
editing_prompt (`str` or `List[str]`, *optional*):
|
973 |
+
The prompt or prompts to use for semantic guidance. Semantic guidance is disabled by setting
|
974 |
+
`editing_prompt = None`. Guidance direction of prompt should be specified via
|
975 |
+
`reverse_editing_direction`.
|
976 |
+
editing_prompt_embeddings (`torch.Tensor`, *optional*):
|
977 |
+
Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be
|
978 |
+
specified via `reverse_editing_direction`.
|
979 |
+
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
|
980 |
+
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
|
981 |
+
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
|
982 |
+
Guidance scale for semantic guidance. If provided as a list, values should correspond to
|
983 |
+
`editing_prompt`.
|
984 |
+
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
|
985 |
+
Number of diffusion steps (for each prompt) for which semantic guidance is not applied. Momentum is
|
986 |
+
calculated for those steps and applied once all warmup periods are over.
|
987 |
+
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
|
988 |
+
Number of diffusion steps (for each prompt) after which semantic guidance is longer applied.
|
989 |
+
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
|
990 |
+
Threshold of semantic guidance.
|
991 |
+
edit_momentum_scale (`float`, *optional*, defaults to 0.1):
|
992 |
+
Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0,
|
993 |
+
momentum is disabled. Momentum is already built up during warmup (for diffusion steps smaller than
|
994 |
+
`sld_warmup_steps`). Momentum is only added to latent guidance once all warmup periods are finished.
|
995 |
+
edit_mom_beta (`float`, *optional*, defaults to 0.4):
|
996 |
+
Defines how semantic guidance momentum builds up. `edit_mom_beta` indicates how much of the previous
|
997 |
+
momentum is kept. Momentum is already built up during warmup (for diffusion steps smaller than
|
998 |
+
`edit_warmup_steps`).
|
999 |
+
edit_weights (`List[float]`, *optional*, defaults to `None`):
|
1000 |
+
Indicates how much each individual concept should influence the overall guidance. If no weights are
|
1001 |
+
provided all concepts are applied equally.
|
1002 |
+
sem_guidance (`List[torch.Tensor]`, *optional*):
|
1003 |
+
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
|
1004 |
+
correspond to `num_inference_steps`.
|
1005 |
+
|
1006 |
+
Examples:
|
1007 |
+
|
1008 |
+
Returns:
|
1009 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1010 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1011 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
1012 |
+
"""
|
1013 |
+
# eta = self.eta
|
1014 |
+
num_inference_steps = self.num_inversion_steps
|
1015 |
+
num_images_per_prompt = 1
|
1016 |
+
# latents = self.init_latents
|
1017 |
+
|
1018 |
+
use_ddpm = True
|
1019 |
+
# zs = self.zs
|
1020 |
+
# wts = self.wts
|
1021 |
+
|
1022 |
+
if use_cross_attn_mask:
|
1023 |
+
self.smoothing = GaussianSmoothing(self.device)
|
1024 |
+
|
1025 |
+
# 0. Default height and width to unet
|
1026 |
+
height = self.height
|
1027 |
+
width = self.width
|
1028 |
+
original_size = self.original_size
|
1029 |
+
target_size = self.target_size
|
1030 |
+
|
1031 |
+
# 1. Check inputs. Raise error if not correct
|
1032 |
+
self.check_inputs(
|
1033 |
+
prompt,
|
1034 |
+
prompt_2,
|
1035 |
+
height,
|
1036 |
+
width,
|
1037 |
+
callback_steps,
|
1038 |
+
negative_prompt,
|
1039 |
+
negative_prompt_2,
|
1040 |
+
prompt_embeds,
|
1041 |
+
negative_prompt_embeds,
|
1042 |
+
pooled_prompt_embeds,
|
1043 |
+
negative_pooled_prompt_embeds,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
# 2. Define call parameters
|
1047 |
+
if prompt is not None and isinstance(prompt, str):
|
1048 |
+
batch_size = 1
|
1049 |
+
elif prompt is not None and isinstance(prompt, list):
|
1050 |
+
batch_size = len(prompt)
|
1051 |
+
else:
|
1052 |
+
batch_size = prompt_embeds.shape[0]
|
1053 |
+
|
1054 |
+
device = self._execution_device
|
1055 |
+
|
1056 |
+
if editing_prompt:
|
1057 |
+
enable_edit_guidance = True
|
1058 |
+
if isinstance(editing_prompt, str):
|
1059 |
+
editing_prompt = [editing_prompt]
|
1060 |
+
enabled_editing_prompts = len(editing_prompt)
|
1061 |
+
elif editing_prompt_embeddings is not None:
|
1062 |
+
enable_edit_guidance = True
|
1063 |
+
enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
1064 |
+
else:
|
1065 |
+
enabled_editing_prompts = 0
|
1066 |
+
enable_edit_guidance = False
|
1067 |
+
|
1068 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1069 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1070 |
+
# corresponds to doing no classifier free guidance.
|
1071 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1072 |
+
|
1073 |
+
if prompt == "" and (prompt_2 == "" or prompt_2 is None):
|
1074 |
+
# only use uncond noise pred
|
1075 |
+
guidance_scale = 0.0
|
1076 |
+
do_classifier_free_guidance = True
|
1077 |
+
else:
|
1078 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1079 |
+
|
1080 |
+
# 3. Encode input prompt
|
1081 |
+
text_encoder_lora_scale = (
|
1082 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1083 |
+
)
|
1084 |
+
(
|
1085 |
+
prompt_embeds,
|
1086 |
+
negative_prompt_embeds,
|
1087 |
+
edit_prompt_embeds,
|
1088 |
+
pooled_prompt_embeds,
|
1089 |
+
negative_pooled_prompt_embeds,
|
1090 |
+
pooled_edit_embeds,
|
1091 |
+
num_edit_tokens
|
1092 |
+
) = self.encode_prompt(
|
1093 |
+
prompt=prompt,
|
1094 |
+
prompt_2=prompt_2,
|
1095 |
+
device=device,
|
1096 |
+
num_images_per_prompt=num_images_per_prompt,
|
1097 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1098 |
+
negative_prompt=negative_prompt,
|
1099 |
+
negative_prompt_2=negative_prompt_2,
|
1100 |
+
prompt_embeds=prompt_embeds,
|
1101 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1102 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1103 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1104 |
+
lora_scale=text_encoder_lora_scale,
|
1105 |
+
enable_edit_guidance=enable_edit_guidance,
|
1106 |
+
editing_prompt=editing_prompt
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
# 4. Prepare timesteps
|
1110 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1111 |
+
|
1112 |
+
timesteps = self.scheduler.timesteps
|
1113 |
+
if use_ddpm:
|
1114 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
1115 |
+
timesteps = timesteps[-zs.shape[0]:]
|
1116 |
+
|
1117 |
+
self.attention_store = AttentionStore(average=store_averaged_over_steps)
|
1118 |
+
# self.prepare_unet(self.attention_store, enabled_editing_prompts)
|
1119 |
+
|
1120 |
+
# 5. Prepare latent variables
|
1121 |
+
num_channels_latents = self.unet.config.in_channels
|
1122 |
+
latents = self.prepare_latents(
|
1123 |
+
batch_size * num_images_per_prompt,
|
1124 |
+
num_channels_latents,
|
1125 |
+
height,
|
1126 |
+
width,
|
1127 |
+
prompt_embeds.dtype,
|
1128 |
+
device,
|
1129 |
+
latents,
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
if user_mask is not None:
|
1133 |
+
user_mask = user_mask.to(self.device)
|
1134 |
+
assert(latents.shape[-2:] == user_mask.shape)
|
1135 |
+
|
1136 |
+
# 6. Prepare extra step kwargs.
|
1137 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
|
1138 |
+
|
1139 |
+
# 7. Prepare added time ids & embeddings
|
1140 |
+
add_text_embeds = pooled_prompt_embeds
|
1141 |
+
add_time_ids = self._get_add_time_ids(
|
1142 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
self.text_cross_attention_maps = [prompt] if isinstance(prompt, str) else prompt
|
1146 |
+
if enable_edit_guidance:
|
1147 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, edit_prompt_embeds], dim=0)
|
1148 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds, pooled_edit_embeds], dim=0)
|
1149 |
+
edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
|
1150 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids, edit_concepts_time_ids], dim=0)
|
1151 |
+
|
1152 |
+
self.text_cross_attention_maps += \
|
1153 |
+
([editing_prompt] if isinstance(editing_prompt, str) else editing_prompt)
|
1154 |
+
elif do_classifier_free_guidance:
|
1155 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1156 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1157 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1158 |
+
|
1159 |
+
prompt_embeds = prompt_embeds.to(device)
|
1160 |
+
add_text_embeds = add_text_embeds.to(device)
|
1161 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1162 |
+
|
1163 |
+
# 8. Denoising loop
|
1164 |
+
edit_momentum = None
|
1165 |
+
self.uncond_estimates = None
|
1166 |
+
self.text_estimates = None
|
1167 |
+
self.edit_estimates = None
|
1168 |
+
self.sem_guidance = None
|
1169 |
+
|
1170 |
+
with self.progress_bar(total=len(timesteps)) as progress_bar:
|
1171 |
+
for i, t in enumerate(timesteps):
|
1172 |
+
# expand the latents if we are doing classifier free guidance
|
1173 |
+
latent_model_input = (
|
1174 |
+
torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
1175 |
+
)
|
1176 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1177 |
+
|
1178 |
+
# predict the noise residual
|
1179 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1180 |
+
noise_pred = self.unet(
|
1181 |
+
latent_model_input,
|
1182 |
+
t,
|
1183 |
+
encoder_hidden_states=prompt_embeds,
|
1184 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1185 |
+
added_cond_kwargs=added_cond_kwargs,
|
1186 |
+
return_dict=False,
|
1187 |
+
)[0]
|
1188 |
+
|
1189 |
+
# perform guidance
|
1190 |
+
if do_classifier_free_guidance:
|
1191 |
+
noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64]
|
1192 |
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
1193 |
+
noise_pred_edit_concepts = noise_pred_out[2:]
|
1194 |
+
|
1195 |
+
#noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1196 |
+
noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1197 |
+
|
1198 |
+
if self.uncond_estimates is None:
|
1199 |
+
self.uncond_estimates = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
|
1200 |
+
self.uncond_estimates[i] = noise_pred_uncond.detach().cpu()
|
1201 |
+
|
1202 |
+
if self.text_estimates is None:
|
1203 |
+
self.text_estimates = torch.zeros((len(timesteps), *noise_pred_text.shape))
|
1204 |
+
self.text_estimates[i] = noise_pred_text.detach().cpu()
|
1205 |
+
|
1206 |
+
if self.edit_estimates is None and enable_edit_guidance:
|
1207 |
+
self.edit_estimates = torch.zeros(
|
1208 |
+
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
if self.sem_guidance is None:
|
1212 |
+
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_text.shape))
|
1213 |
+
|
1214 |
+
if edit_momentum is None:
|
1215 |
+
edit_momentum = torch.zeros_like(noise_guidance)
|
1216 |
+
|
1217 |
+
if enable_edit_guidance:
|
1218 |
+
concept_weights = torch.zeros(
|
1219 |
+
(len(noise_pred_edit_concepts), noise_guidance.shape[0]),
|
1220 |
+
device=self.device,
|
1221 |
+
dtype=noise_guidance.dtype,
|
1222 |
+
)
|
1223 |
+
noise_guidance_edit = torch.zeros(
|
1224 |
+
(len(noise_pred_edit_concepts), *noise_guidance.shape),
|
1225 |
+
device=self.device,
|
1226 |
+
dtype=noise_guidance.dtype,
|
1227 |
+
)
|
1228 |
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
1229 |
+
warmup_inds = []
|
1230 |
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
1231 |
+
self.edit_estimates[i, c] = noise_pred_edit_concept
|
1232 |
+
if isinstance(edit_guidance_scale, list):
|
1233 |
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
1234 |
+
else:
|
1235 |
+
edit_guidance_scale_c = edit_guidance_scale
|
1236 |
+
|
1237 |
+
if isinstance(edit_threshold, list):
|
1238 |
+
edit_threshold_c = edit_threshold[c]
|
1239 |
+
else:
|
1240 |
+
edit_threshold_c = edit_threshold
|
1241 |
+
if isinstance(reverse_editing_direction, list):
|
1242 |
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
1243 |
+
else:
|
1244 |
+
reverse_editing_direction_c = reverse_editing_direction
|
1245 |
+
if edit_weights:
|
1246 |
+
edit_weight_c = edit_weights[c]
|
1247 |
+
else:
|
1248 |
+
edit_weight_c = 1.0
|
1249 |
+
if isinstance(edit_warmup_steps, list):
|
1250 |
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
1251 |
+
else:
|
1252 |
+
edit_warmup_steps_c = edit_warmup_steps
|
1253 |
+
|
1254 |
+
if isinstance(edit_cooldown_steps, list):
|
1255 |
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
1256 |
+
elif edit_cooldown_steps is None:
|
1257 |
+
edit_cooldown_steps_c = i + 1
|
1258 |
+
else:
|
1259 |
+
edit_cooldown_steps_c = edit_cooldown_steps
|
1260 |
+
if i >= edit_warmup_steps_c:
|
1261 |
+
warmup_inds.append(c)
|
1262 |
+
if i >= edit_cooldown_steps_c:
|
1263 |
+
noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept)
|
1264 |
+
continue
|
1265 |
+
|
1266 |
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
1267 |
+
# tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
1268 |
+
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
1269 |
+
|
1270 |
+
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts)
|
1271 |
+
if reverse_editing_direction_c:
|
1272 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
1273 |
+
concept_weights[c, :] = tmp_weights
|
1274 |
+
|
1275 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
1276 |
+
|
1277 |
+
if user_mask is not None:
|
1278 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
|
1279 |
+
|
1280 |
+
if use_cross_attn_mask:
|
1281 |
+
out = self.attention_store.aggregate_attention(
|
1282 |
+
attention_maps=self.attention_store.step_store,
|
1283 |
+
prompts=self.text_cross_attention_maps,
|
1284 |
+
res=32,
|
1285 |
+
from_where=["up","down"],
|
1286 |
+
is_cross=True,
|
1287 |
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
attn_map = out[:, :, 1:1+num_edit_tokens[c]] # 0 -> startoftext
|
1291 |
+
|
1292 |
+
# average over all tokens
|
1293 |
+
assert(attn_map.shape[2]==num_edit_tokens[c])
|
1294 |
+
attn_map = torch.sum(attn_map, dim=2)
|
1295 |
+
|
1296 |
+
# gaussian_smoothing
|
1297 |
+
attn_map = F.pad(attn_map.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect")
|
1298 |
+
attn_map = self.smoothing(attn_map).squeeze(0).squeeze(0)
|
1299 |
+
|
1300 |
+
# create binary mask
|
1301 |
+
# torch.quantile function expects float32
|
1302 |
+
if attn_map.dtype == torch.float32:
|
1303 |
+
tmp = torch.quantile(
|
1304 |
+
attn_map.flatten(),
|
1305 |
+
edit_threshold_c
|
1306 |
+
)
|
1307 |
+
else:
|
1308 |
+
tmp = torch.quantile(
|
1309 |
+
attn_map.flatten().to(torch.float32),
|
1310 |
+
edit_threshold_c
|
1311 |
+
).to(attn_map.dtype)
|
1312 |
+
|
1313 |
+
attn_mask = torch.where(attn_map >= tmp, 1.0, 0.0)
|
1314 |
+
|
1315 |
+
# resolution must match latent space dimension
|
1316 |
+
attn_mask = F.interpolate(
|
1317 |
+
attn_mask.unsqueeze(0).unsqueeze(0),
|
1318 |
+
noise_guidance_edit_tmp.shape[-2:]
|
1319 |
+
)[0,0,:,:]
|
1320 |
+
|
1321 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
1322 |
+
else:
|
1323 |
+
# calculate quantile
|
1324 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
1325 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True)
|
1326 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1,4,1,1)
|
1327 |
+
|
1328 |
+
# torch.quantile function expects float32
|
1329 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
1330 |
+
tmp = torch.quantile(
|
1331 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
1332 |
+
edit_threshold_c,
|
1333 |
+
dim=2,
|
1334 |
+
keepdim=False,
|
1335 |
+
)
|
1336 |
+
else:
|
1337 |
+
tmp = torch.quantile(
|
1338 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
1339 |
+
edit_threshold_c,
|
1340 |
+
dim=2,
|
1341 |
+
keepdim=False,
|
1342 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
1343 |
+
|
1344 |
+
noise_guidance_edit_tmp = torch.where(
|
1345 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1346 |
+
noise_guidance_edit_tmp,
|
1347 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
1351 |
+
|
1352 |
+
warmup_inds = torch.tensor(warmup_inds).to(self.device)
|
1353 |
+
if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0:
|
1354 |
+
concept_weights = concept_weights.to("cpu") # Offload to cpu
|
1355 |
+
noise_guidance_edit = noise_guidance_edit.to("cpu")
|
1356 |
+
|
1357 |
+
concept_weights_tmp = torch.index_select(concept_weights.to(self.device), 0, warmup_inds)
|
1358 |
+
concept_weights_tmp = torch.where(
|
1359 |
+
concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp
|
1360 |
+
)
|
1361 |
+
concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0)
|
1362 |
+
# concept_weights_tmp = torch.nan_to_num(concept_weights_tmp)
|
1363 |
+
|
1364 |
+
noise_guidance_edit_tmp = torch.index_select(
|
1365 |
+
noise_guidance_edit.to(self.device), 0, warmup_inds
|
1366 |
+
)
|
1367 |
+
noise_guidance_edit_tmp = torch.einsum(
|
1368 |
+
"cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp
|
1369 |
+
)
|
1370 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp
|
1371 |
+
noise_guidance = noise_guidance + noise_guidance_edit_tmp
|
1372 |
+
|
1373 |
+
self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu()
|
1374 |
+
|
1375 |
+
del noise_guidance_edit_tmp
|
1376 |
+
del concept_weights_tmp
|
1377 |
+
concept_weights = concept_weights.to(self.device)
|
1378 |
+
noise_guidance_edit = noise_guidance_edit.to(self.device)
|
1379 |
+
|
1380 |
+
concept_weights = torch.where(
|
1381 |
+
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
concept_weights = torch.nan_to_num(concept_weights)
|
1385 |
+
|
1386 |
+
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit)
|
1387 |
+
|
1388 |
+
noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum
|
1389 |
+
|
1390 |
+
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit
|
1391 |
+
|
1392 |
+
if warmup_inds.shape[0] == len(noise_pred_edit_concepts):
|
1393 |
+
noise_guidance = noise_guidance + noise_guidance_edit
|
1394 |
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
1395 |
+
|
1396 |
+
if sem_guidance is not None:
|
1397 |
+
edit_guidance = sem_guidance[i].to(self.device)
|
1398 |
+
noise_guidance = noise_guidance + edit_guidance
|
1399 |
+
|
1400 |
+
noise_pred = noise_pred_uncond + noise_guidance
|
1401 |
+
|
1402 |
+
# TODO: compatible with SEGA?
|
1403 |
+
#if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1404 |
+
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1405 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1406 |
+
|
1407 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1408 |
+
if use_ddpm:
|
1409 |
+
idx = t_to_idx[int(t)]
|
1410 |
+
latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs).prev_sample
|
1411 |
+
|
1412 |
+
else: #if not use_ddpm:
|
1413 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1414 |
+
|
1415 |
+
# step callback
|
1416 |
+
store_step = i in attn_store_steps
|
1417 |
+
if store_step:
|
1418 |
+
print(f"storing attention for step {i}")
|
1419 |
+
self.attention_store.between_steps(store_step)
|
1420 |
+
|
1421 |
+
# call the callback, if provided
|
1422 |
+
progress_bar.update()
|
1423 |
+
if callback is not None and i % callback_steps == 0:
|
1424 |
+
callback(i, t, latents)
|
1425 |
+
|
1426 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1427 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1428 |
+
self.upcast_vae()
|
1429 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1430 |
+
elif self.vae.config.force_upcast:
|
1431 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1432 |
+
|
1433 |
+
if not output_type == "latent":
|
1434 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1435 |
+
else:
|
1436 |
+
image = latents
|
1437 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1438 |
+
|
1439 |
+
# apply watermark if available
|
1440 |
+
if self.watermark is not None:
|
1441 |
+
image = self.watermark.apply_watermark(image)
|
1442 |
+
|
1443 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1444 |
+
|
1445 |
+
# Offload last model to CPU
|
1446 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1447 |
+
self.final_offload_hook.offload()
|
1448 |
+
|
1449 |
+
if not return_dict:
|
1450 |
+
return (image,)
|
1451 |
+
|
1452 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1453 |
+
|
1454 |
+
# Overrride to properly handle the loading and unloading of the additional text encoder.
|
1455 |
+
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
1456 |
+
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
1457 |
+
# it here explicitly to be able to tell that it's coming from an SDXL
|
1458 |
+
# pipeline.
|
1459 |
+
state_dict, network_alphas = self.lora_state_dict(
|
1460 |
+
pretrained_model_name_or_path_or_dict,
|
1461 |
+
unet_config=self.unet.config,
|
1462 |
+
**kwargs,
|
1463 |
+
)
|
1464 |
+
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
1465 |
+
|
1466 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
1467 |
+
if len(text_encoder_state_dict) > 0:
|
1468 |
+
self.load_lora_into_text_encoder(
|
1469 |
+
text_encoder_state_dict,
|
1470 |
+
network_alphas=network_alphas,
|
1471 |
+
text_encoder=self.text_encoder,
|
1472 |
+
prefix="text_encoder",
|
1473 |
+
lora_scale=self.lora_scale,
|
1474 |
+
)
|
1475 |
+
|
1476 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
1477 |
+
if len(text_encoder_2_state_dict) > 0:
|
1478 |
+
self.load_lora_into_text_encoder(
|
1479 |
+
text_encoder_2_state_dict,
|
1480 |
+
network_alphas=network_alphas,
|
1481 |
+
text_encoder=self.text_encoder_2,
|
1482 |
+
prefix="text_encoder_2",
|
1483 |
+
lora_scale=self.lora_scale,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
@classmethod
|
1487 |
+
def save_lora_weights(
|
1488 |
+
self,
|
1489 |
+
save_directory: Union[str, os.PathLike],
|
1490 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1491 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1492 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1493 |
+
is_main_process: bool = True,
|
1494 |
+
weight_name: str = None,
|
1495 |
+
save_function: Callable = None,
|
1496 |
+
safe_serialization: bool = True,
|
1497 |
+
):
|
1498 |
+
state_dict = {}
|
1499 |
+
|
1500 |
+
def pack_weights(layers, prefix):
|
1501 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
1502 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
1503 |
+
return layers_state_dict
|
1504 |
+
|
1505 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
1506 |
+
|
1507 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
1508 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
1509 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
1510 |
+
|
1511 |
+
self.write_lora_layers(
|
1512 |
+
state_dict=state_dict,
|
1513 |
+
save_directory=save_directory,
|
1514 |
+
is_main_process=is_main_process,
|
1515 |
+
weight_name=weight_name,
|
1516 |
+
save_function=save_function,
|
1517 |
+
safe_serialization=safe_serialization,
|
1518 |
+
)
|
1519 |
+
|
1520 |
+
def _remove_text_encoder_monkey_patch(self):
|
1521 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
1522 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
1523 |
+
|
1524 |
+
|
1525 |
+
@torch.no_grad()
|
1526 |
+
def invert(self,
|
1527 |
+
# image_path: str,
|
1528 |
+
x0,
|
1529 |
+
source_prompt: str = "",
|
1530 |
+
source_prompt_2: str = None,
|
1531 |
+
source_guidance_scale = 3.5,
|
1532 |
+
negative_prompt: str = None,
|
1533 |
+
negative_prompt_2: str = None,
|
1534 |
+
num_inversion_steps: int = 100,
|
1535 |
+
skip_steps: int = 35,
|
1536 |
+
eta: float = 1.0,
|
1537 |
+
generator: Optional[torch.Generator] = None,
|
1538 |
+
height: Optional[int] = None,
|
1539 |
+
width: Optional[int] = None,
|
1540 |
+
original_size: Optional[Tuple[int, int]] = None,
|
1541 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1542 |
+
target_size: Optional[Tuple[int, int]] = None,
|
1543 |
+
):
|
1544 |
+
"""
|
1545 |
+
Inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
|
1546 |
+
based on the code in https://github.com/inbarhub/DDPM_inversion
|
1547 |
+
|
1548 |
+
returns:
|
1549 |
+
zs - noise maps
|
1550 |
+
xts - intermediate inverted latents
|
1551 |
+
"""
|
1552 |
+
|
1553 |
+
# self.eta = eta
|
1554 |
+
# assert(self.eta > 0)
|
1555 |
+
|
1556 |
+
self.num_inversion_steps = num_inversion_steps
|
1557 |
+
self.scheduler.set_timesteps(self.num_inversion_steps)
|
1558 |
+
timesteps = self.scheduler.timesteps.to(self.device)
|
1559 |
+
|
1560 |
+
cross_attention_kwargs = None # TODO
|
1561 |
+
batch_size = 1
|
1562 |
+
num_images_per_prompt = 1
|
1563 |
+
|
1564 |
+
device = self._execution_device
|
1565 |
+
|
1566 |
+
# Reset attn processor, we do not want to store attn maps during inversion
|
1567 |
+
# self.unet.set_default_attn_processor()
|
1568 |
+
|
1569 |
+
# 0. Ensure that only uncond embedding is used if prompt = ""
|
1570 |
+
if source_prompt == "" and \
|
1571 |
+
(source_prompt_2 == "" or source_prompt_2 is None):
|
1572 |
+
# noise pred should only be noise_pred_uncond
|
1573 |
+
source_guidance_scale = 0.0
|
1574 |
+
do_classifier_free_guidance = True
|
1575 |
+
else:
|
1576 |
+
do_classifier_free_guidance = source_guidance_scale > 1.0
|
1577 |
+
|
1578 |
+
# 1. Default height and width to unet
|
1579 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1580 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1581 |
+
original_size = original_size or (height, width)
|
1582 |
+
target_size = target_size or (height, width)
|
1583 |
+
|
1584 |
+
self.height = height
|
1585 |
+
self.width = width
|
1586 |
+
self.original_size = original_size
|
1587 |
+
self.target_size = target_size
|
1588 |
+
|
1589 |
+
# 2. get embeddings
|
1590 |
+
text_encoder_lora_scale = (
|
1591 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1592 |
+
)
|
1593 |
+
|
1594 |
+
(
|
1595 |
+
prompt_embeds,
|
1596 |
+
negative_prompt_embeds,
|
1597 |
+
_,
|
1598 |
+
pooled_prompt_embeds,
|
1599 |
+
negative_pooled_prompt_embeds,
|
1600 |
+
_,
|
1601 |
+
_
|
1602 |
+
) = self.encode_prompt(
|
1603 |
+
prompt=source_prompt,
|
1604 |
+
prompt_2=source_prompt_2,
|
1605 |
+
device=device,
|
1606 |
+
num_images_per_prompt=num_images_per_prompt,
|
1607 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1608 |
+
negative_prompt=negative_prompt,
|
1609 |
+
negative_prompt_2=negative_prompt_2,
|
1610 |
+
lora_scale=text_encoder_lora_scale,
|
1611 |
+
enable_edit_guidance=False,
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
# 3. Prepare added time ids & embeddings
|
1615 |
+
add_text_embeds = pooled_prompt_embeds
|
1616 |
+
add_time_ids = self._get_add_time_ids(
|
1617 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1618 |
+
)
|
1619 |
+
|
1620 |
+
if do_classifier_free_guidance:
|
1621 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1622 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1623 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1624 |
+
|
1625 |
+
prompt_embeds = prompt_embeds.to(device)
|
1626 |
+
add_text_embeds = add_text_embeds.to(device)
|
1627 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1628 |
+
|
1629 |
+
# # 4. prepare image
|
1630 |
+
# image = Image.open(image_path)
|
1631 |
+
# size = self.unet.sample_size * self.vae_scale_factor
|
1632 |
+
# image = image.convert("RGB").resize((size,size))
|
1633 |
+
# image = self.image_processor.preprocess(image)
|
1634 |
+
# image = image.to(device=device, dtype=negative_prompt_embeds.dtype)
|
1635 |
+
|
1636 |
+
# if image.shape[1] == 4:
|
1637 |
+
# x0 = image
|
1638 |
+
# else:
|
1639 |
+
# if self.vae.config.force_upcast:
|
1640 |
+
# image = image.float()
|
1641 |
+
# self.vae.to(dtype=torch.float32)
|
1642 |
+
|
1643 |
+
# x0 = self.vae.encode(image).latent_dist.sample(generator)
|
1644 |
+
# x0 = x0.to(negative_prompt_embeds.dtype)
|
1645 |
+
# x0 = self.vae.config.scaling_factor * x0
|
1646 |
+
|
1647 |
+
# autoencoder reconstruction
|
1648 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1649 |
+
self.upcast_vae()
|
1650 |
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1651 |
+
image_rec = self.vae.decode(x0_tmp / self.vae.config.scaling_factor, return_dict=False)[0]
|
1652 |
+
elif self.vae.config.force_upcast:
|
1653 |
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1654 |
+
image_rec = self.vae.decode(x0_tmp / self.vae.config.scaling_factor, return_dict=False)[0]
|
1655 |
+
else:
|
1656 |
+
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False)[0]
|
1657 |
+
|
1658 |
+
image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
|
1659 |
+
|
1660 |
+
# 5. find zs and xts
|
1661 |
+
variance_noise_shape = (
|
1662 |
+
self.num_inversion_steps,
|
1663 |
+
self.unet.config.in_channels,
|
1664 |
+
self.unet.sample_size,
|
1665 |
+
self.unet.sample_size)
|
1666 |
+
|
1667 |
+
# intermediate latents
|
1668 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
|
1669 |
+
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1670 |
+
|
1671 |
+
for t in reversed(timesteps):
|
1672 |
+
idx = t_to_idx[int(t)]
|
1673 |
+
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
|
1674 |
+
xts[idx] = self.scheduler.add_noise(x0, noise, t)
|
1675 |
+
xts = torch.cat([xts, x0 ],dim = 0)
|
1676 |
+
|
1677 |
+
# noise maps
|
1678 |
+
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1679 |
+
|
1680 |
+
for t in tqdm(timesteps):
|
1681 |
+
idx = t_to_idx[int(t)]
|
1682 |
+
# 1. predict noise residual
|
1683 |
+
xt = xts[idx][None]
|
1684 |
+
|
1685 |
+
latent_model_input = (
|
1686 |
+
torch.cat([xt] * 2) if do_classifier_free_guidance else xt
|
1687 |
+
)
|
1688 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1689 |
+
|
1690 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1691 |
+
noise_pred = self.unet(
|
1692 |
+
latent_model_input,
|
1693 |
+
t,
|
1694 |
+
encoder_hidden_states=prompt_embeds,
|
1695 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1696 |
+
added_cond_kwargs=added_cond_kwargs,
|
1697 |
+
return_dict=False,
|
1698 |
+
)[0]
|
1699 |
+
|
1700 |
+
# 2. perform guidance
|
1701 |
+
if do_classifier_free_guidance:
|
1702 |
+
noise_pred_out = noise_pred.chunk(2)
|
1703 |
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
1704 |
+
noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1705 |
+
|
1706 |
+
xtm1 = xts[idx+1][None]
|
1707 |
+
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta)
|
1708 |
+
zs[idx] = z
|
1709 |
+
|
1710 |
+
# correction to avoid error accumulation
|
1711 |
+
xts[idx+1] = xtm1_corrected
|
1712 |
+
|
1713 |
+
# TODO: I don't think that the noise map for the last step should be discarded ?!
|
1714 |
+
# if not zs is None:
|
1715 |
+
# zs[-1] = torch.zeros_like(zs[-1])
|
1716 |
+
|
1717 |
+
# self.init_latents = xts[skip_steps].expand(1, -1, -1, -1)
|
1718 |
+
# self.zs = zs[skip_steps:]
|
1719 |
+
# self.wts = xts
|
1720 |
+
# self.latents_path = xts[skip_steps:]
|
1721 |
+
# return zs, xts, image_rec
|
1722 |
+
return zs, xts
|
1723 |
+
|
1724 |
+
|
1725 |
+
# Copied from pipelines.StableDiffusion.CycleDiffusionPipeline.compute_noise
|
1726 |
+
def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
1727 |
+
# 1. get previous step value (=t-1)
|
1728 |
+
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
|
1729 |
+
|
1730 |
+
# 2. compute alphas, betas
|
1731 |
+
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
1732 |
+
alpha_prod_t_prev = (
|
1733 |
+
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
|
1734 |
+
)
|
1735 |
+
|
1736 |
+
beta_prod_t = 1 - alpha_prod_t
|
1737 |
+
|
1738 |
+
# 3. compute predicted original sample from predicted noise also called
|
1739 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1740 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
1741 |
+
|
1742 |
+
# 4. Clip "predicted x_0"
|
1743 |
+
if scheduler.config.clip_sample:
|
1744 |
+
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
1745 |
+
|
1746 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
1747 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
1748 |
+
variance = scheduler._get_variance(timestep, prev_timestep)
|
1749 |
+
std_dev_t = eta * variance ** (0.5)
|
1750 |
+
|
1751 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1752 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
|
1753 |
+
|
1754 |
+
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
|
1755 |
+
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
1756 |
+
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
|
1757 |
+
|
1758 |
+
return noise, mu_xt + ( eta * variance ** 0.5 )*noise
|