Solannin's picture
Update app.py
3c428b9 verified
raw
history blame
No virus
5.5 kB
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
# Funci贸n para cargar y filtrar datos
def load_and_filter_data(file, year):
data = pd.read_csv(file)
data['FECHA'] = pd.to_datetime(data['FECHA'])
return data[data['FECHA'].dt.year >= year]
# Funci贸n para crear ventanas deslizantes
def sliding_windows(data, seq_length):
x, y = [], []
for i in range(len(data) - seq_length):
x.append(data[i:i + seq_length])
y.append(data[i + seq_length])
return np.array(x), np.array(y)
# Clase LSTM
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
return self.fc(out[:, -1, :])
# Clase GRU
class GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(GRU, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
out, _ = self.gru(x, h0)
return self.fc(out[:, -1, :])
# Funci贸n para entrenar el modelo
def train_model(model, criterion, optimizer, trainX, trainY, num_epochs):
for epoch in range(num_epochs):
model.train()
outputs = model(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# Funci贸n para predecir y graficar resultados
def predict_and_plot(model, trainX, trainY, testX, testY, scaler, filtered_data1, filtered_data2, seq_length):
model.eval()
train_predict = model(trainX)
test_predict = model(testX)
train_predict = scaler.inverse_transform(train_predict.detach().numpy().reshape(-1, 1))
trainY_plot = scaler.inverse_transform(trainY.numpy().reshape(-1, 1))
test_predict = scaler.inverse_transform(test_predict.detach().numpy().reshape(-1, 1))
testY_plot = scaler.inverse_transform(testY.numpy().reshape(-1, 1))
train_data = pd.DataFrame({
'Fecha': filtered_data1['FECHA'].values[seq_length:seq_length+len(trainY)],
'Datos de entrenamiento': trainY_plot.ravel(),
'Predicciones de entrenamiento': train_predict.ravel()
})
test_data = pd.DataFrame({
'Fecha': filtered_data2['FECHA'].values[seq_length:seq_length+len(testY)],
'Datos de prueba': testY_plot.ravel(),
'Predicciones de prueba': test_predict.ravel()
})
combined_data = pd.concat([train_data, test_data])
combined_data.set_index('Fecha', inplace=True)
st.line_chart(combined_data)
def main():
st.title('Predicci贸n de Series de Tiempo')
st.sidebar.title('Par谩metros del Modelo')
#Incluso podemos agregar funcion para datos futuros.
# 1. Crear boton para cargar archivo csv.
# 2. Llamar a ese archivo y guardarlo.
# 3. Usarlo para test y entrenamiento. (Se puede crear una funcion o filtro)
'''
//Posible implementaci贸n
file = 'archivo.csv'
butt = input('Ingrese al archivo para generar la prediccion de tiempo', file)
//resto del codigo
'''
file1 = 'PARCIAL-AGUA-_2_.csv'
file2 = 'PARCIAL-AGUA-_3_.csv'
year_filter = 2007
seq_length = 4
data1 = load_and_filter_data(file1, year_filter)
data2 = load_and_filter_data(file2, year_filter)
combined_values = np.concatenate([data1['VALOR-LS-CF-N'].values, data2['VALOR-LS-CF-N'].values]).reshape(-1, 1)
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(combined_values)
scaled_values1 = scaled_values[:len(data1)]
scaled_values2 = scaled_values[len(data1):]
x_train, y_train = sliding_windows(scaled_values1, seq_length)
x_test, y_test = sliding_windows(scaled_values2, seq_length)
trainX = torch.Tensor(x_train)
trainY = torch.Tensor(y_train)
testX = torch.Tensor(x_test)
testY = torch.Tensor(y_test)
model_type = st.sidebar.selectbox('Selecciona el modelo', ('LSTM', 'GRU'))
num_epochs = st.sidebar.slider('N煤mero de 茅pocas', 100, 500, 200)
learning_rate = 0.01
input_size = 1
hidden_size = 50
num_layers = 2
output_size = 1
if model_type == 'LSTM':
model = LSTM(input_size, hidden_size, num_layers, output_size)
else:
model = GRU(input_size, hidden_size, num_layers, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if st.sidebar.button('Entrenar y Predecir'):
train_model(model, criterion, optimizer, trainX, trainY, num_epochs)
predict_and_plot(model, trainX, trainY, testX, testY, scaler, data1, data2, seq_length)
if __name__ == "__main__":
main()