Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
def alexa(audio): | |
converted_text = speech_to_text(audio) | |
generated_text = text_generation(converted_text) | |
speech = text_to_speech(generated_text) | |
return speech | |
def speech_to_text(audio): | |
audio_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-tiny") | |
if audio == None: | |
raise gr.Error("Please, submit an audio file") | |
else: | |
text = audio_to_text(audio)["text"] | |
return text | |
def text_generation(text): | |
torch.random.manual_seed(0) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", | |
torch_dtype="auto", | |
trust_remote_code=True, ) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct") | |
messages = [ | |
{"role": "user", "content": text} | |
] | |
generation_args = { | |
"max_new_tokens": 500, | |
"return_full_text": False, | |
"temperature": 0.0, | |
"do_sample": False, | |
} | |
text_gen= pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code = True) | |
response = text_gen(messages, **generation_args) | |
return response[0]["generated_text"] | |
def text_to_speech(text): | |
text_to_audio = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
narrated_text = text_to_audio(text) | |
return (narrated_text["sampling_rate"], narrated_text["audio"][0] ) | |
gr.Interface( | |
fn=alexa, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Audio(label="Narration", type="numpy", autoplay=True)], live=True).launch().share=True |