Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
import base64 | |
import requests | |
from io import StringIO | |
from streamlit_agraph import agraph, Node, Edge, Config | |
st.title('Json File Reader') | |
def get_json(url): | |
js = requests.get(url) | |
data = js.json() | |
return data | |
st.markdown("""Reads the Json file of Comments data extracted from Youtube API & creates graph""") | |
st.sidebar.header('File Upload') | |
your_file = st.sidebar.file_uploader(label="Upload the file here") | |
if your_file is not None: | |
bytes_data = your_file.getvalue() | |
json_data = json.loads(bytes_data) | |
else: | |
st.write("Example api file can be located here") | |
st.write("""https://raw.githubusercontent.com/insightbuilder/python_de_learners_data/main/code_script_notebooks/python_scripts/json_reader/toplevel_comment_zGAkhN1YZXM.json""") | |
json_data = get_json("https://raw.githubusercontent.com/insightbuilder/python_de_learners_data/main/code_script_notebooks/python_scripts/json_reader/toplevel_comment_zGAkhN1YZXM.json") | |
try: | |
length = len(json_data) | |
if length < 15: | |
indices = st.sidebar.slider("Start n End",0,length,(0,10)) | |
else: | |
indices = st.sidebar.slider("Start n End",0,length,(0,int(length/15))) | |
selected_indices = json_data[indices[0]:indices[1]] | |
#st.write(selected_indices) | |
#creating the graph of the connection | |
nodes = [] | |
edges = [] | |
authors = [] | |
video_id = selected_indices[0]['snippet']['videoId'] | |
nodes.append(Node(id=video_id,lable='Youtube Video', | |
size = 25, symbolType='square')) | |
for data in selected_indices: | |
author = data['snippet']['topLevelComment']['snippet']['authorDisplayName'].split(' ')[0] | |
author_img = data['snippet']['topLevelComment']['snippet']['authorProfileImageUrl'] | |
if author not in authors: | |
nodes.append(Node(id=author, | |
size=25, | |
shape="circularImage", | |
image=author_img) ) | |
authors.append(author) | |
if 'replies' in data: | |
replies = data['replies']['comments'] | |
for reply in replies: | |
reply_author = reply['snippet']['authorDisplayName'].split(' ')[0] | |
reply_author_img = reply['snippet']['authorProfileImageUrl'] | |
if reply_author not in authors: | |
nodes.append(Node(id=reply_author, | |
size=15, | |
shape="circularImage", | |
image=reply_author_img) ) | |
authors.append(reply_author) | |
edges.append( Edge(source=reply_author, | |
target=author, | |
type="CURVE_SMOOTH")) | |
edges.append(Edge(source=author, target=video_id,type="CURVE_SMOOTH")) | |
#st.write(authors) | |
config = Config(width=750, | |
height=950, | |
directed=True, | |
physics=False, | |
hierarchical=False, | |
node={'labelProperty':'label','renderLabel':True}) | |
return_value = agraph(nodes = nodes, edges = edges, config = config) | |
except Exception as e: | |
st.write(e) | |
st.markdown("Provided Json is not Youtube API data. Unable to Parse") | |
#st.write(json_data) | |
""" | |
import streamlit as st | |
from py2neo import Graph, Node, Relationship | |
from scripts.viz import draw | |
# Initialize a Neo4j graph instance | |
graph = Graph() | |
graph.delete_all() | |
# Create nodes and relationships | |
nicole = Node("Person", name="Nicole", age=24) | |
drew = Node("Person", name="Drew", age=20) | |
mtdew = Node("Drink", name="Mountain Dew", calories=9000) | |
cokezero = Node("Drink", name="Coke Zero", calories=0) | |
coke = Node("Manufacturer", name="Coca Cola") | |
pepsi = Node("Manufacturer", name="Pepsi") | |
graph.create(nicole | drew | mtdew | cokezero | coke | pepsi) | |
graph.create(Relationship(nicole, "LIKES", cokezero)) | |
graph.create(Relationship(nicole, "LIKES", mtdew)) | |
graph.create(Relationship(drew, "LIKES", mtdew)) | |
graph.create(Relationship(coke, "MAKES", cokezero)) | |
graph.create(Relationship(pepsi, "MAKES", mtdew)) | |
# Streamlit interface | |
st.title("Py2neo Application with Streamlit") | |
# Display graph visualization using Py2neo's draw function | |
st.subheader("Graph Visualization") | |
options = {"Person": "name", "Drink": "name", "Manufacturer": "name"} | |
draw(graph, options) | |
# Display node and relationship information | |
st.subheader("Node and Relationship Information") | |
st.write("Nodes:") | |
for node in [nicole, drew, mtdew, cokezero, coke, pepsi]: | |
st.write(f"{node.labels}: {node}") | |
st.write("Relationships:") | |
for relationship in graph.match(rel_type="LIKES"): | |
st.write(relationship) | |
st.write("Manufacturers:") | |
for manufacturer in graph.match(rel_type="MAKES"): | |
st.write(manufacturer) | |
import streamlit as st | |
import json | |
import base64 | |
import requests | |
from io import StringIO | |
from streamlit_agraph import agraph, Node, Edge, Config | |
st.title('Json File Reader') | |
@st.cache_data | |
def get_json(url): | |
js = requests.get(url) | |
data = js.json() | |
return data | |
st.markdown("""Reads the Json file of Comments data extracted from Youtube API & creates graph""") | |
st.sidebar.header('File Upload') | |
your_file = st.sidebar.file_uploader(label="Upload the file here") | |
if your_file is not None: | |
bytes_data = your_file.getvalue() | |
json_data = json.loads(bytes_data) | |
else: | |
st.write("Example api file can be located here") | |
st.write("""https://raw.githubusercontent.com/insightbuilder/python_de_learners_data/main/code_script_notebooks/python_scripts/json_reader/toplevel_comment_zGAkhN1YZXM.json""") | |
json_data = get_json("https://raw.githubusercontent.com/insightbuilder/python_de_learners_data/main/code_script_notebooks/python_scripts/json_reader/toplevel_comment_zGAkhN1YZXM.json") | |
try: | |
length = len(json_data) | |
if length < 15: | |
indices = st.sidebar.slider("Start n End",0,length,(0,10)) | |
else: | |
indices = st.sidebar.slider("Start n End",0,length,(0,int(length/15))) | |
selected_indices = json_data[indices[0]:indices[1]] | |
#st.write(selected_indices) | |
#creating the graph of the connection | |
nodes = [] | |
edges = [] | |
authors = [] | |
video_id = selected_indices[0]['snippet']['videoId'] | |
nodes.append(Node(id=video_id,lable='Youtube Video', | |
size = 25, symbolType='square')) | |
for data in selected_indices: | |
author = data['snippet']['topLevelComment']['snippet']['authorDisplayName'].split(' ')[0] | |
author_img = data['snippet']['topLevelComment']['snippet']['authorProfileImageUrl'] | |
if author not in authors: | |
nodes.append(Node(id=author, | |
size=25, | |
shape="circularImage", | |
image=author_img) ) | |
authors.append(author) | |
if 'replies' in data: | |
replies = data['replies']['comments'] | |
for reply in replies: | |
reply_author = reply['snippet']['authorDisplayName'].split(' ')[0] | |
reply_author_img = reply['snippet']['authorProfileImageUrl'] | |
if reply_author not in authors: | |
nodes.append(Node(id=reply_author, | |
size=15, | |
shape="circularImage", | |
image=reply_author_img) ) | |
authors.append(reply_author) | |
edges.append( Edge(source=reply_author, | |
target=author, | |
type="CURVE_SMOOTH")) | |
edges.append(Edge(source=author, target=video_id,type="CURVE_SMOOTH")) | |
#st.write(authors) | |
config = Config(width=750, | |
height=950, | |
directed=True, | |
physics=False, | |
hierarchical=False, | |
node={'labelProperty':'label','renderLabel':True}) | |
return_value = agraph(nodes = nodes, edges = edges, config = config) | |
except Exception as e: | |
st.write(e) | |
st.markdown("Provided Json is not Youtube API data. Unable to Parse") | |
#st.write(json_data) |