Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Commit
β’
327ed91
1
Parent(s):
a8793bc
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
|
4 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
@@ -14,12 +14,13 @@ from langchain.prompts.chat import (
|
|
14 |
|
15 |
def create_db_from_video_url(video_url, api_key):
|
16 |
"""
|
17 |
-
Creates an Embedding of the Video and performs
|
18 |
"""
|
19 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
20 |
|
21 |
loader = YoutubeLoader.from_youtube_url(video_url)
|
22 |
transcripts = loader.load()
|
|
|
23 |
|
24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
25 |
docs = text_splitter.split_documents(transcripts)
|
@@ -28,6 +29,9 @@ def create_db_from_video_url(video_url, api_key):
|
|
28 |
return db
|
29 |
|
30 |
def get_response(video, request):
|
|
|
|
|
|
|
31 |
API_KEY = os.environ.get("GOOGLE_API_KEY")
|
32 |
db = create_db_from_video_url(video, API_KEY)
|
33 |
docs = db.similarity_search(query=request, k=5)
|
@@ -35,6 +39,7 @@ def get_response(video, request):
|
|
35 |
|
36 |
chat = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=API_KEY, convert_system_message_to_human=True)
|
37 |
|
|
|
38 |
template = """
|
39 |
You are an assistant that can answer questions about youtube videos based on
|
40 |
video transcripts: {docs}
|
@@ -44,6 +49,8 @@ def get_response(video, request):
|
|
44 |
"""
|
45 |
|
46 |
system_msg_prompt = SystemMessagePromptTemplate.from_template(template)
|
|
|
|
|
47 |
human_template = "Answer the following questions: {question}"
|
48 |
human_msg_prompt = HumanMessagePromptTemplate.from_template(human_template)
|
49 |
|
@@ -52,15 +59,25 @@ def get_response(video, request):
|
|
52 |
)
|
53 |
|
54 |
chain = LLMChain(llm=chat, prompt=chat_prompt)
|
|
|
55 |
response = chain.run(question=request, docs=docs_content)
|
|
|
56 |
return response
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
if st.button("Get Answer"):
|
65 |
-
answer = get_response(video_url, question)
|
66 |
-
st.text_area("Answer:", value=answer, height=300)
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
|
4 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
|
|
14 |
|
15 |
def create_db_from_video_url(video_url, api_key):
|
16 |
"""
|
17 |
+
Creates an Embedding of the Video and performs
|
18 |
"""
|
19 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
20 |
|
21 |
loader = YoutubeLoader.from_youtube_url(video_url)
|
22 |
transcripts = loader.load()
|
23 |
+
# cannot provide this directly to the model so we are splitting the transcripts into small chunks
|
24 |
|
25 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
26 |
docs = text_splitter.split_documents(transcripts)
|
|
|
29 |
return db
|
30 |
|
31 |
def get_response(video, request):
|
32 |
+
"""
|
33 |
+
Usind Gemini Pro to get the response. It can handle upto 32k tokens.
|
34 |
+
"""
|
35 |
API_KEY = os.environ.get("GOOGLE_API_KEY")
|
36 |
db = create_db_from_video_url(video, API_KEY)
|
37 |
docs = db.similarity_search(query=request, k=5)
|
|
|
39 |
|
40 |
chat = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=API_KEY, convert_system_message_to_human=True)
|
41 |
|
42 |
+
# creating a template for request
|
43 |
template = """
|
44 |
You are an assistant that can answer questions about youtube videos based on
|
45 |
video transcripts: {docs}
|
|
|
49 |
"""
|
50 |
|
51 |
system_msg_prompt = SystemMessagePromptTemplate.from_template(template)
|
52 |
+
|
53 |
+
# human prompt
|
54 |
human_template = "Answer the following questions: {question}"
|
55 |
human_msg_prompt = HumanMessagePromptTemplate.from_template(human_template)
|
56 |
|
|
|
59 |
)
|
60 |
|
61 |
chain = LLMChain(llm=chat, prompt=chat_prompt)
|
62 |
+
|
63 |
response = chain.run(question=request, docs=docs_content)
|
64 |
+
|
65 |
return response
|
66 |
|
67 |
+
# creating title, description for the web app
|
68 |
+
title = "YouTubeπ΄ Videoπ€³ AI Assistant π€"
|
69 |
+
description = "Answers to the Questions asked by the user on the specified YouTube video."
|
70 |
+
|
71 |
+
|
72 |
+
# building the app
|
73 |
+
youtube_video_assistant = gr.Interface(
|
74 |
+
fn=get_response,
|
75 |
+
inputs=[gr.Text(label="Enter the Youtube Video URL:", placeholder="Example: https://www.youtube.com/watch?v=MnDudvCyWpc"),
|
76 |
+
gr.Text(label="Enter your Question", placeholder="Example: What's the video is about?")],
|
77 |
+
outputs=gr.TextArea(label="Answers using....some secret llm π€«π:"),
|
78 |
+
title=title,
|
79 |
+
description=description
|
80 |
+
)
|
81 |
|
82 |
+
# launching the web app
|
83 |
+
youtube_video_assistant.launch(share=True)
|
|
|
|
|
|