Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Create 3_SyntheticRegression.py
Browse files
pages/3_SyntheticRegression.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
|
7 |
+
# Function to build the model
|
8 |
+
def build_model(my_learning_rate):
|
9 |
+
model = tf.keras.models.Sequential()
|
10 |
+
model.add(tf.keras.layers.Dense(units=1, input_shape=(1,)))
|
11 |
+
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=my_learning_rate),
|
12 |
+
loss='mean_squared_error',
|
13 |
+
metrics=[tf.keras.metrics.RootMeanSquaredError()])
|
14 |
+
return model
|
15 |
+
|
16 |
+
# Function to train the model
|
17 |
+
def train_model(model, feature, label, epochs, batch_size):
|
18 |
+
history = model.fit(x=feature, y=label, batch_size=batch_size,
|
19 |
+
epochs=epochs)
|
20 |
+
trained_weight = model.get_weights()[0]
|
21 |
+
trained_bias = model.get_weights()[1]
|
22 |
+
epochs = history.epoch
|
23 |
+
hist = pd.DataFrame(history.history)
|
24 |
+
rmse = hist["root_mean_squared_error"]
|
25 |
+
return trained_weight, trained_bias, epochs, rmse
|
26 |
+
|
27 |
+
# Function to plot the model
|
28 |
+
def plot_the_model(trained_weight, trained_bias, feature, label):
|
29 |
+
plt.figure(figsize=(10, 6))
|
30 |
+
plt.xlabel('Feature')
|
31 |
+
plt.ylabel('Label')
|
32 |
+
|
33 |
+
# Plot the feature values vs. label values
|
34 |
+
plt.scatter(feature, label, c='b')
|
35 |
+
|
36 |
+
# Create a red line representing the model
|
37 |
+
x0 = 0
|
38 |
+
y0 = trained_bias
|
39 |
+
x1 = feature[-1]
|
40 |
+
y1 = trained_bias + (trained_weight * x1)
|
41 |
+
plt.plot([x0, x1], [y0, y1], c='r')
|
42 |
+
|
43 |
+
plt.show()
|
44 |
+
|
45 |
+
# Function to plot the loss curve
|
46 |
+
def plot_the_loss_curve(epochs, rmse):
|
47 |
+
plt.figure(figsize=(10, 6))
|
48 |
+
plt.xlabel('Epoch')
|
49 |
+
plt.ylabel('Root Mean Squared Error')
|
50 |
+
|
51 |
+
plt.plot(epochs, rmse, label='Loss')
|
52 |
+
plt.legend()
|
53 |
+
plt.ylim([rmse.min()*0.97, rmse.max()])
|
54 |
+
plt.show()
|
55 |
+
|
56 |
+
# Define the dataset
|
57 |
+
my_feature = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0])
|
58 |
+
my_label = np.array([5.0, 8.8, 9.6, 14.2, 18.8, 19.5, 21.4, 26.8, 28.9, 32.0, 33.8, 38.2])
|
59 |
+
|
60 |
+
# Streamlit interface
|
61 |
+
st.title("Simple Linear Regression with Synthetic Data")
|
62 |
+
|
63 |
+
learning_rate = st.sidebar.slider('Learning Rate', min_value=0.001, max_value=1.0, value=0.01, step=0.01)
|
64 |
+
epochs = st.sidebar.slider('Epochs', min_value=1, max_value=1000, value=10, step=1)
|
65 |
+
batch_size = st.sidebar.slider('Batch Size', min_value=1, max_value=len(my_feature), value=12, step=1)
|
66 |
+
|
67 |
+
if st.sidebar.button('Run'):
|
68 |
+
my_model = build_model(learning_rate)
|
69 |
+
trained_weight, trained_bias, epochs, rmse = train_model(my_model, my_feature, my_label, epochs, batch_size)
|
70 |
+
|
71 |
+
st.subheader('Model Plot')
|
72 |
+
plot_the_model(trained_weight, trained_bias, my_feature, my_label)
|
73 |
+
st.pyplot(plt)
|
74 |
+
|
75 |
+
st.subheader('Loss Curve')
|
76 |
+
plot_the_loss_curve(epochs, rmse)
|
77 |
+
st.pyplot(plt)
|