Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Create 17_Graph2.py
Browse files- pages/17_Graph2.py +110 -0
pages/17_Graph2.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow_gnn as tfgnn
|
4 |
+
from tensorflow_gnn.models import mt_albis
|
5 |
+
import networkx as nx
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Set environment variable for legacy Keras
|
10 |
+
import os
|
11 |
+
os.environ['TF_USE_LEGACY_KERAS'] = '1'
|
12 |
+
|
13 |
+
# Define the model function
|
14 |
+
def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec):
|
15 |
+
graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec)
|
16 |
+
|
17 |
+
# Encode input features to match the required output shape of 128
|
18 |
+
graph = tfgnn.keras.layers.MapFeatures(
|
19 |
+
node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features'])
|
20 |
+
)(graph)
|
21 |
+
|
22 |
+
# For each round of message passing...
|
23 |
+
for _ in range(2):
|
24 |
+
# ... create and apply a Keras layer.
|
25 |
+
graph = mt_albis.MtAlbisGraphUpdate(
|
26 |
+
units=128, message_dim=64,
|
27 |
+
attention_type="none", simple_conv_reduce_type="mean",
|
28 |
+
normalization_type="layer", next_state_type="residual",
|
29 |
+
state_dropout_rate=0.2, l2_regularization=1e-5,
|
30 |
+
receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES
|
31 |
+
)(graph)
|
32 |
+
|
33 |
+
return tf.keras.Model(inputs, graph)
|
34 |
+
|
35 |
+
# Function to create a sample graph with meaningful synthetic data
|
36 |
+
def create_sample_graph():
|
37 |
+
num_nodes = 10
|
38 |
+
num_edges = 15
|
39 |
+
|
40 |
+
graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True)
|
41 |
+
|
42 |
+
# Create synthetic features
|
43 |
+
years_published = np.random.randint(1990, 2022, size=num_nodes).astype(np.float32)
|
44 |
+
num_authors = np.random.randint(1, 10, size=num_nodes).astype(np.float32)
|
45 |
+
citation_weights = np.random.uniform(0.1, 5.0, size=num_edges).astype(np.float32)
|
46 |
+
|
47 |
+
# Combine features into a single array per node
|
48 |
+
node_features = np.stack([years_published, num_authors], axis=-1)
|
49 |
+
edge_features = citation_weights.reshape(-1, 1)
|
50 |
+
|
51 |
+
graph_tensor = tfgnn.GraphTensor.from_pieces(
|
52 |
+
node_sets={
|
53 |
+
"papers": tfgnn.NodeSet.from_fields(
|
54 |
+
sizes=[num_nodes],
|
55 |
+
features={"features": tf.convert_to_tensor(node_features)}
|
56 |
+
)
|
57 |
+
},
|
58 |
+
edge_sets={
|
59 |
+
"cites": tfgnn.EdgeSet.from_fields(
|
60 |
+
sizes=[num_edges],
|
61 |
+
adjacency=tfgnn.Adjacency.from_indices(
|
62 |
+
source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)),
|
63 |
+
target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32))
|
64 |
+
),
|
65 |
+
features={"features": tf.convert_to_tensor(edge_features)}
|
66 |
+
)
|
67 |
+
}
|
68 |
+
)
|
69 |
+
|
70 |
+
return graph, graph_tensor
|
71 |
+
|
72 |
+
# Streamlit app
|
73 |
+
def main():
|
74 |
+
st.title("Graph Neural Network Architecture Visualization")
|
75 |
+
|
76 |
+
# Create sample graph
|
77 |
+
nx_graph, graph_tensor = create_sample_graph()
|
78 |
+
|
79 |
+
# Create and compile the model
|
80 |
+
model = model_fn(graph_tensor.spec)
|
81 |
+
model.compile(optimizer='adam', loss='binary_crossentropy')
|
82 |
+
|
83 |
+
# Display model summary
|
84 |
+
st.subheader("Model Summary")
|
85 |
+
model.summary(print_fn=lambda x: st.text(x))
|
86 |
+
|
87 |
+
# Visualize the graph
|
88 |
+
st.subheader("Sample Graph Visualization")
|
89 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
90 |
+
pos = nx.spring_layout(nx_graph)
|
91 |
+
nx.draw(nx_graph, pos, with_labels=True, node_color='lightblue',
|
92 |
+
node_size=500, arrowsize=20, ax=ax)
|
93 |
+
st.pyplot(fig)
|
94 |
+
|
95 |
+
# Display graph tensor info
|
96 |
+
st.subheader("Graph Tensor Information")
|
97 |
+
st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}")
|
98 |
+
st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}")
|
99 |
+
st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}")
|
100 |
+
st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}")
|
101 |
+
|
102 |
+
# Display sample node and edge features
|
103 |
+
st.subheader("Sample Node and Edge Features")
|
104 |
+
st.write("Node Features (Year Published, Number of Authors):")
|
105 |
+
st.write(node_features)
|
106 |
+
st.write("Edge Features (Citation Weight):")
|
107 |
+
st.write(edge_features)
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|