Spaces:
Sleeping
Sleeping
Create 6_Logistic_Regression.py
Browse files
pages/6_Logistic_Regression.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.datasets import load_iris
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
9 |
+
from tensorflow.keras.models import Sequential
|
10 |
+
from tensorflow.keras.layers import Dense
|
11 |
+
|
12 |
+
# Load Iris dataset
|
13 |
+
iris = load_iris()
|
14 |
+
X = iris.data
|
15 |
+
y = iris.target
|
16 |
+
|
17 |
+
# Only use the first two classes for binary classification
|
18 |
+
X = X[y != 2]
|
19 |
+
y = y[y != 2]
|
20 |
+
|
21 |
+
# Split the dataset into training and testing sets
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
+
|
24 |
+
# Standardize the data
|
25 |
+
scaler = StandardScaler()
|
26 |
+
X_train = scaler.fit_transform(X_train)
|
27 |
+
X_test = scaler.transform(X_test)
|
28 |
+
|
29 |
+
# Build the logistic regression model using Keras
|
30 |
+
model = Sequential()
|
31 |
+
model.add(Dense(1, input_dim=4, activation='sigmoid'))
|
32 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
33 |
+
|
34 |
+
# Train the model
|
35 |
+
model.fit(X_train, y_train, epochs=100, verbose=0)
|
36 |
+
|
37 |
+
# Predict and evaluate the model
|
38 |
+
y_pred_train = (model.predict(X_train) > 0.5).astype("int32")
|
39 |
+
y_pred_test = (model.predict(X_test) > 0.5).astype("int32")
|
40 |
+
|
41 |
+
train_accuracy = accuracy_score(y_train, y_pred_train)
|
42 |
+
test_accuracy = accuracy_score(y_test, y_pred_test)
|
43 |
+
|
44 |
+
conf_matrix = confusion_matrix(y_test, y_pred_test)
|
45 |
+
|
46 |
+
# Streamlit interface
|
47 |
+
st.title('Logistic Regression with Keras on Iris Dataset')
|
48 |
+
|
49 |
+
st.write('## Model Performance')
|
50 |
+
st.write(f'Training Accuracy: {train_accuracy:.2f}')
|
51 |
+
st.write(f'Testing Accuracy: {test_accuracy:.2f}')
|
52 |
+
|
53 |
+
st.write('## Confusion Matrix')
|
54 |
+
fig, ax = plt.subplots()
|
55 |
+
ax.matshow(conf_matrix, cmap=plt.cm.Blues, alpha=0.3)
|
56 |
+
for i in range(conf_matrix.shape[0]):
|
57 |
+
for j in range(conf_matrix.shape[1]):
|
58 |
+
ax.text(x=j, y=i, s=conf_matrix[i, j], va='center', ha='center')
|
59 |
+
|
60 |
+
plt.xlabel('Predicted Label')
|
61 |
+
plt.ylabel('True Label')
|
62 |
+
st.pyplot(fig)
|
63 |
+
|
64 |
+
st.write('## Make a Prediction')
|
65 |
+
sepal_length = st.number_input('Sepal Length (cm)', min_value=0.0, max_value=10.0, value=5.0)
|
66 |
+
sepal_width = st.number_input('Sepal Width (cm)', min_value=0.0, max_value=10.0, value=3.5)
|
67 |
+
petal_length = st.number_input('Petal Length (cm)', min_value=0.0, max_value=10.0, value=1.4)
|
68 |
+
petal_width = st.number_input('Petal Width (cm)', min_value=0.0, max_value=10.0, value=0.2)
|
69 |
+
|
70 |
+
if st.button('Predict'):
|
71 |
+
input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
72 |
+
input_data_scaled = scaler.transform(input_data)
|
73 |
+
prediction = (model.predict(input_data_scaled) > 0.5).astype("int32")
|
74 |
+
st.write(f'Prediction: {"Setosa" if prediction[0][0] == 0 else "Versicolor"}')
|
75 |
+
|