Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras import layers, models, applications | |
import tensorflow_datasets as tfds | |
import matplotlib.pyplot as plt | |
# Load the dataset | |
dataset_name = "cats_vs_dogs" | |
(ds_train, ds_val), ds_info = tfds.load(dataset_name, split=['train[:80%]', 'train[80%:]'], with_info=True, as_supervised=True) | |
# Preprocess the dataset | |
def preprocess_image(image, label): | |
image = tf.image.resize(image, (150, 150)) | |
image = image / 255.0 | |
return image, label | |
ds_train = ds_train.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE) | |
ds_val = ds_val.map(preprocess_image).batch(32).prefetch(tf.data.AUTOTUNE) | |
# Streamlit app | |
st.title("Transfer Learning with VGG16 for Image Classification") | |
# Input parameters | |
batch_size = st.slider("Batch Size", 16, 128, 32, 16) | |
epochs = st.slider("Epochs", 5, 50, 10, 5) | |
# Load the pre-trained VGG16 model | |
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) | |
# Freeze the convolutional base | |
base_model.trainable = False | |
# Add custom layers on top | |
model = models.Sequential([ | |
base_model, | |
layers.Flatten(), | |
layers.Dense(256, activation='relu'), | |
layers.Dropout(0.5), | |
layers.Dense(1, activation='sigmoid') # Change the output layer based on the number of classes | |
]) | |
model.summary() | |
# Compile the model | |
model.compile(optimizer='adam', | |
loss='binary_crossentropy', # Change loss function based on the number of classes | |
metrics=['accuracy']) | |
# Train the model | |
if st.button("Train Model"): | |
with st.spinner("Training the model..."): | |
history = model.fit( | |
ds_train, | |
epochs=epochs, | |
validation_data=ds_val | |
) | |
st.success("Model training completed!") | |
# Display training curves | |
st.subheader("Training and Validation Accuracy") | |
fig, ax = plt.subplots() | |
ax.plot(history.history['accuracy'], label='Training Accuracy') | |
ax.plot(history.history['val_accuracy'], label='Validation Accuracy') | |
ax.set_xlabel('Epoch') | |
ax.set_ylabel('Accuracy') | |
ax.legend() | |
st.pyplot(fig) | |
st.subheader("Training and Validation Loss") | |
fig, ax = plt.subplots() | |
ax.plot(history.history['loss'], label='Training Loss') | |
ax.plot(history.history['val_loss'], label='Validation Loss') | |
ax.set_xlabel('Epoch') | |
ax.set_ylabel('Loss') | |
ax.legend() | |
st.pyplot(fig) | |
# Evaluate the model | |
if st.button("Evaluate Model"): | |
test_loss, test_acc = model.evaluate(ds_val, verbose=2) | |
st.write(f"Validation accuracy: {test_acc}") | |