Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import tensorflow_gnn as tfgnn | |
from tensorflow_gnn.models import mt_albis | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# Set environment variable for legacy Keras | |
import os | |
os.environ['TF_USE_LEGACY_KERAS'] = '1' | |
# Define the model function | |
def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec): | |
graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec) | |
# Encode input features to match the required output shape of 128 | |
graph = tfgnn.keras.layers.MapFeatures( | |
node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features']) | |
)(graph) | |
# For each round of message passing... | |
for _ in range(2): | |
# ... create and apply a Keras layer. | |
graph = mt_albis.MtAlbisGraphUpdate( | |
units=128, message_dim=64, | |
attention_type="none", simple_conv_reduce_type="mean", | |
normalization_type="layer", next_state_type="residual", | |
state_dropout_rate=0.2, l2_regularization=1e-5, | |
receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES | |
)(graph) | |
return tf.keras.Model(inputs, graph) | |
# Function to create a sample graph with meaningful synthetic data | |
def create_sample_graph(): | |
num_nodes = 10 | |
num_edges = 15 | |
# Create a random graph | |
graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True) | |
# Generate synthetic features | |
years_published = np.random.randint(1990, 2022, size=num_nodes).astype(np.float32) | |
num_authors = np.random.randint(1, 10, size=num_nodes).astype(np.float32) | |
citation_weights = np.random.uniform(0.1, 5.0, size=num_edges).astype(np.float32) | |
# Combine features into a single array per node | |
node_features = np.stack([years_published, num_authors], axis=-1) | |
edge_features = citation_weights.reshape(-1, 1) | |
# Assign random titles to nodes | |
paper_titles = [f"Paper {i+1}" for i in range(num_nodes)] | |
nx.set_node_attributes(graph, {i: {'title': title} for i, title in enumerate(paper_titles)}) | |
graph_tensor = tfgnn.GraphTensor.from_pieces( | |
node_sets={ | |
"papers": tfgnn.NodeSet.from_fields( | |
sizes=[num_nodes], | |
features={"features": tf.convert_to_tensor(node_features)} | |
) | |
}, | |
edge_sets={ | |
"cites": tfgnn.EdgeSet.from_fields( | |
sizes=[num_edges], | |
adjacency=tfgnn.Adjacency.from_indices( | |
source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)), | |
target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32)) | |
), | |
features={"features": tf.convert_to_tensor(edge_features)} | |
) | |
} | |
) | |
return graph, graph_tensor, node_features, edge_features | |
# Streamlit app | |
def main(): | |
st.title("Graph Neural Network Architecture Visualization") | |
if st.button("Recreate Graph"): | |
recreate_graph = True | |
else: | |
recreate_graph = False | |
if recreate_graph: | |
# Create sample graph | |
nx_graph, graph_tensor, node_features, edge_features = create_sample_graph() | |
# Create and compile the model | |
model = model_fn(graph_tensor.spec) | |
model.compile(optimizer='adam', loss='binary_crossentropy') | |
# Display model summary | |
st.subheader("Model Summary") | |
model.summary(print_fn=lambda x: st.text(x)) | |
# Visualize the graph | |
st.subheader("Sample Graph Visualization") | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
pos = nx.spring_layout(nx_graph) | |
labels = nx.get_node_attributes(nx_graph, 'title') | |
nx.draw(nx_graph, pos, labels=labels, with_labels=True, node_color='lightblue', | |
node_size=3000, arrowsize=20, ax=ax) # Increased node_size to 3000 | |
st.pyplot(fig) | |
# Display graph tensor info | |
st.subheader("Graph Tensor Information") | |
st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}") | |
st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}") | |
st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}") | |
st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}") | |
# Display sample node and edge features | |
st.subheader("Sample Node and Edge Features") | |
st.write("Node Features (Year Published, Number of Authors):") | |
st.write(node_features) | |
st.write("Edge Features (Citation Weight):") | |
st.write(edge_features) | |
if __name__ == "__main__": | |
main() | |