Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from sentence_transformers import SentenceTransformer | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
# Load pre-trained model and tokenizer | |
model_name = "bert-base-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
# Function to get embeddings | |
def get_embeddings(texts): | |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
return outputs.last_hidden_state[:, 0, :].numpy() | |
# Sample data (replace with your own data import) | |
documents = [ | |
"The quick brown fox jumps over the lazy dog.", | |
"A journey of a thousand miles begins with a single step.", | |
"To be or not to be, that is the question.", | |
"All that glitters is not gold.", | |
] | |
# Get embeddings for documents | |
embeddings = get_embeddings(documents) | |
# Create graph | |
G = nx.Graph() | |
# Add nodes and edges based on cosine similarity | |
threshold = 0.5 # Adjust this threshold as needed | |
for i in range(len(documents)): | |
G.add_node(i, text=documents[i]) | |
for j in range(i+1, len(documents)): | |
similarity = torch.cosine_similarity(torch.tensor(embeddings[i]), torch.tensor(embeddings[j]), dim=0) | |
if similarity > threshold: | |
G.add_edge(i, j, weight=similarity.item()) | |
# Visualize the graph | |
pos = nx.spring_layout(G) | |
nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=8, font_weight='bold') | |
edge_labels = nx.get_edge_attributes(G, 'weight') | |
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) | |
plt.title("Document Similarity Graph") | |
plt.show() | |
# Example of querying the graph | |
query = "What is the meaning of life?" | |
query_embedding = get_embeddings([query])[0] | |
# Find most similar document | |
similarities = [torch.cosine_similarity(torch.tensor(query_embedding), torch.tensor(emb), dim=0) for emb in embeddings] | |
most_similar_idx = max(range(len(similarities)), key=similarities.__getitem__) | |
print(f"Most similar document to the query: {documents[most_similar_idx]}") | |
# You can extend this to implement more complex graph-based retrieval algorithms |