Spaces:
Sleeping
Sleeping
import os | |
import time | |
import uuid | |
from typing import List, Tuple, Optional, Dict, Union | |
import google.generativeai as genai | |
import gradio as gr | |
from PIL import Image | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.chains import LLMChain, SequentialChain | |
from textwrap import dedent | |
import google.generativeai as genai | |
import yfinance as yf | |
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices | |
from pypfopt import EfficientFrontier | |
from pypfopt import risk_models | |
from pypfopt import expected_returns | |
from pypfopt import plotting | |
import copy | |
import numpy as np | |
import pandas as pd | |
import plotly.express as px | |
import matplotlib.pyplot as plt | |
from datetime import datetime | |
import datetime | |
# Tool import | |
from crewai.tools.gemini_tools import GeminiSearchTools | |
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool | |
from crewai.tools.browser_tools import BrowserTools | |
from crewai.tools.sec_tools import SECTools | |
# Google Langchain | |
from langchain_google_genai import GoogleGenerativeAI | |
#Crew imports | |
from crewai import Agent, Task, Crew, Process | |
# Retrieve API Key from Environment Variable | |
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY') | |
# Ensure the API key is available | |
if not GOOGLE_AI_STUDIO: | |
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.") | |
# LangChain function for company analysis | |
def company_analysis(api_key: str, company_name: str) -> dict: | |
os.environ['OPENAI_API_KEY'] = api_key # Set the OpenAI API key as an environment variable | |
llm = ChatOpenAI() | |
''' | |
# Identify the email's language | |
template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in." | |
prompt1 = ChatPromptTemplate.from_template(template1) | |
chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language") | |
# Translate the email to English | |
template2 = "Translate this email from {language} to English. Here is the email:\n" + email | |
prompt2 = ChatPromptTemplate.from_template(template2) | |
chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email") | |
# Provide a summary in English | |
template3 = "Create a short summary of this email:\n{translated_email}" | |
prompt3 = ChatPromptTemplate.from_template(template3) | |
chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary") | |
# Provide a reply in English | |
template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues" | |
prompt4 = ChatPromptTemplate.from_template(template4) | |
chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply") | |
# Provide a translation back to the original language | |
template5 = "Translate the {reply} back to the original {language} of the email." | |
prompt5 = ChatPromptTemplate.from_template(template5) | |
chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply") | |
seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5], | |
input_variables=['email'], | |
output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'], | |
verbose=True) | |
''' | |
return seq_chain(email) | |
print("google-generativeai:", genai.__version__) | |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") | |
TITLE_INTRO = """<h1 align="center">Introduction to Financial Manager</h1>""" | |
TITLE1 = """<h1 align="center">Company Analysis</h1>""" | |
TITLE2 = """<h1 align="center">Investment Strategy</h1>""" | |
TITLE3 = """<h1 align="center">Profit Prophet</h1>""" | |
SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>""" | |
GETKEY = """ | |
<div style="text-align: center; display: flex; justify-content: center; align-items: center;"> | |
<span>Get an API key | |
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>. | |
</span> | |
</div> | |
""" | |
AVATAR_IMAGES = ( | |
None, | |
"https://media.roboflow.com/spaces/gemini-icon.png" | |
) | |
movie_script_analysis = "" | |
IMAGE_CACHE_DIRECTORY = "/tmp" | |
IMAGE_WIDTH = 512 | |
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]] | |
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: | |
if not stop_sequences: | |
return None | |
return [sequence.strip() for sequence in stop_sequences.split(",")] | |
def preprocess_image(image: Image.Image) -> Optional[Image.Image]: | |
image_height = int(image.height * IMAGE_WIDTH / image.width) | |
return image.resize((IMAGE_WIDTH, image_height)) | |
def cache_pil_image(image: Image.Image) -> str: | |
image_filename = f"{uuid.uuid4()}.jpeg" | |
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True) | |
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename) | |
image.save(image_path, "JPEG") | |
return image_path | |
def preprocess_chat_history( | |
history: CHAT_HISTORY | |
) -> List[Dict[str, Union[str, List[str]]]]: | |
messages = [] | |
for user_message, model_message in history: | |
if isinstance(user_message, tuple): | |
pass | |
elif user_message is not None: | |
messages.append({'role': 'user', 'parts': [user_message]}) | |
if model_message is not None: | |
messages.append({'role': 'model', 'parts': [model_message]}) | |
return messages | |
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY: | |
for file in files: | |
image = Image.open(file).convert('RGB') | |
image = preprocess_image(image) | |
image_path = cache_pil_image(image) | |
chatbot.append(((image_path,), None)) | |
return chatbot | |
def user(text_prompt: str, chatbot: CHAT_HISTORY): | |
if text_prompt: | |
chatbot.append((text_prompt, None)) | |
return "", chatbot | |
def bot( | |
google_key: str, | |
files: Optional[List[str]], | |
temperature: float, | |
max_output_tokens: int, | |
stop_sequences: str, | |
top_k: int, | |
top_p: float, | |
chatbot: CHAT_HISTORY | |
): | |
if len(chatbot) == 0: | |
return chatbot | |
google_key = google_key if google_key else GOOGLE_API_KEY | |
if not google_key: | |
raise ValueError( | |
"GOOGLE_API_KEY is not set. " | |
"Please follow the instructions in the README to set it up.") | |
genai.configure(api_key=google_key) | |
generation_config = genai.types.GenerationConfig( | |
temperature=temperature, | |
max_output_tokens=max_output_tokens, | |
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), | |
top_k=top_k, | |
top_p=top_p) | |
if files: | |
text_prompt = [chatbot[-1][0]] \ | |
if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \ | |
else [] | |
image_prompt = [Image.open(file).convert('RGB') for file in files] | |
model = genai.GenerativeModel('gemini-pro-vision') | |
response = model.generate_content( | |
text_prompt + image_prompt, | |
stream=True, | |
generation_config=generation_config) | |
else: | |
messages = preprocess_chat_history(chatbot) | |
model = genai.GenerativeModel('gemini-pro') | |
response = model.generate_content( | |
messages, | |
stream=True, | |
generation_config=generation_config) | |
# streaming effect | |
chatbot[-1][1] = "" | |
for chunk in response: | |
for i in range(0, len(chunk.text), 10): | |
section = chunk.text[i:i + 10] | |
chatbot[-1][1] += section | |
time.sleep(0.01) | |
yield chatbot | |
google_key_component = gr.Textbox( | |
label="GOOGLE API KEY", | |
value="", | |
type="password", | |
placeholder="...", | |
info="You have to provide your own GOOGLE_API_KEY for this app to function properly", | |
visible=GOOGLE_API_KEY is None | |
) | |
chatbot_component = gr.Chatbot( | |
label='Gemini Pro Vision', | |
bubble_full_width=False, | |
avatar_images=AVATAR_IMAGES, | |
scale=2, | |
height=400 | |
) | |
text_prompt_component = gr.Textbox(value=movie_script_analysis, | |
show_label=False, autofocus=True, scale=8, lines=8 | |
) | |
upload_button_component = gr.UploadButton( | |
label="Upload Images", file_count="multiple", file_types=["image"], scale=1 | |
) | |
run_button_component = gr.Button(value="Run", variant="primary", scale=1) | |
run_button_analysis = gr.Button(value="Run", variant="primary", scale=1) | |
temperature_component = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.4, | |
step=0.05, | |
label="Temperature", | |
info=( | |
"Temperature controls the degree of randomness in token selection. Lower " | |
"temperatures are good for prompts that expect a true or correct response, " | |
"while higher temperatures can lead to more diverse or unexpected results. " | |
)) | |
max_output_tokens_component = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=1024, | |
step=1, | |
label="Token limit", | |
info=( | |
"Token limit determines the maximum amount of text output from one prompt. A " | |
"token is approximately four characters. The default value is 2048." | |
)) | |
stop_sequences_component = gr.Textbox( | |
label="Add stop sequence", | |
value="", | |
type="text", | |
placeholder="STOP, END", | |
info=( | |
"A stop sequence is a series of characters (including spaces) that stops " | |
"response generation if the model encounters it. The sequence is not included " | |
"as part of the response. You can add up to five stop sequences." | |
)) | |
top_k_component = gr.Slider( | |
minimum=1, | |
maximum=40, | |
value=32, | |
step=1, | |
label="Top-K", | |
info=( | |
"Top-k changes how the model selects tokens for output. A top-k of 1 means the " | |
"selected token is the most probable among all tokens in the model’s " | |
"vocabulary (also called greedy decoding), while a top-k of 3 means that the " | |
"next token is selected from among the 3 most probable tokens (using " | |
"temperature)." | |
)) | |
top_p_component = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=1, | |
step=0.01, | |
label="Top-P", | |
info=( | |
"Top-p changes how the model selects tokens for output. Tokens are selected " | |
"from most probable to least until the sum of their probabilities equals the " | |
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, " | |
"and .1 and the top-p value is .5, then the model will select either A or B as " | |
"the next token (using temperature). " | |
)) | |
user_inputs = [ | |
text_prompt_component, | |
chatbot_component | |
] | |
bot_inputs = [ | |
google_key_component, | |
upload_button_component, | |
temperature_component, | |
max_output_tokens_component, | |
stop_sequences_component, | |
top_k_component, | |
top_p_component, | |
chatbot_component | |
] | |
# Gmix ++++++++++++++++++++++++++++++++++++++++++++++++ | |
#Crew imports | |
from crewai import Agent, Task, Crew, Process | |
run_button_crewai = gr.Button(value="Run", variant="primary", scale=1) | |
research_topic_component = gr.Textbox(lines=2, placeholder="Enter Research Topic Here...") | |
# Set gemini_llm | |
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO) | |
def crewai_process(research_topic): | |
# Define your agents with roles and goals | |
researcher = Agent( | |
role='Senior Research Analyst', | |
goal=f'Uncover cutting-edge developments in {research_topic}', | |
backstory="""You are a Senior Research Analyst at a leading think tank. | |
Your expertise lies in identifying emerging trends. You have a knack for dissecting complex data and presenting | |
actionable insights.""", | |
verbose=True, | |
allow_delegation=False, | |
llm = gemini_llm, | |
tools=[ | |
GeminiSearchTools.gemini_search | |
] | |
) | |
writer = Agent( | |
role='Tech Content Strategist', | |
goal='Craft compelling content on tech advancements', | |
backstory="""You are a renowned Tech Social Media Content Writer and Strategist, known for your insightful | |
and engaging articles on technology and innovation. With a deep understanding of | |
the tech industry and how people are impacted by it, you transform complex concepts into compelling narratives.""", | |
verbose=True, | |
allow_delegation=True, | |
llm = gemini_llm | |
# Add tools and other optional parameters as needed | |
) | |
# Create tasks for your agents | |
task1 = Task( | |
description=f"""Conduct a comprehensive analysis of the latest advancements in {research_topic}. | |
Compile your findings in a detailed report. Your final answer MUST be a full analysis report""", | |
agent=researcher | |
) | |
task2 = Task( | |
description="""Using the insights from the researcher's report, develop an engaging blog | |
post that highlights the most significant advancements. | |
Your post should be informative yet accessible, catering to a tech-savvy audience. | |
Aim for a narrative that captures the essence of these breakthroughs and their | |
implications for the future. Your final answer MUST be the full blog post of at least 3 paragraphs.""", | |
agent=writer | |
) | |
# Instantiate your crew with a sequential process | |
crew = Crew( | |
agents=[researcher, writer], | |
tasks=[task1, task2], | |
verbose=2, | |
process=Process.sequential | |
) | |
# Get your crew to work! | |
result = crew.kickoff() | |
return result | |
# Portfolio Analysis +++++++++++++++++++++++++++++++++++ | |
def plot_cum_returns(data, title): | |
daily_cum_returns = 1 + data.dropna().pct_change() | |
daily_cum_returns = daily_cum_returns.cumprod()*100 | |
fig = px.line(daily_cum_returns, title=title) | |
return fig | |
def plot_efficient_frontier_and_max_sharpe(mu, S): | |
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve | |
ef = EfficientFrontier(mu, S) | |
fig, ax = plt.subplots(figsize=(6,4)) | |
ef_max_sharpe = copy.deepcopy(ef) | |
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False) | |
# Find the max sharpe portfolio | |
ef_max_sharpe.max_sharpe(risk_free_rate=0.02) | |
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance() | |
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe") | |
# Generate random portfolios with random weights | |
n_samples = 1000 | |
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples) | |
rets = w.dot(ef.expected_returns) | |
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T)) | |
sharpes = rets / stds | |
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r") | |
# Output | |
ax.legend() | |
return fig | |
def output_results(start_date, end_date, tickers_string): | |
tickers = tickers_string.split(',') | |
# Get Stock Prices | |
stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close'] | |
# Plot Individual Stock Prices | |
fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks') | |
# Plot Individual Cumulative Returns | |
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100') | |
# Calculatge and Plot Correlation Matrix between Stocks | |
corr_df = stocks_df.corr().round(2) | |
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks') | |
# Calculate expected returns and sample covariance matrix for portfolio optimization later | |
mu = expected_returns.mean_historical_return(stocks_df) | |
S = risk_models.sample_cov(stocks_df) | |
# Plot efficient frontier curve | |
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S) | |
# Get optimized weights | |
ef = EfficientFrontier(mu, S) | |
ef.max_sharpe(risk_free_rate=0.04) | |
weights = ef.clean_weights() | |
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance() | |
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \ | |
'{}%'.format((annual_volatility*100).round(2)), \ | |
'{}%'.format((sharpe_ratio*100).round(2)) | |
weights_df = pd.DataFrame.from_dict(weights, orient = 'index') | |
weights_df = weights_df.reset_index() | |
weights_df.columns = ['Tickers', 'Weights'] | |
# Calculate returns of portfolio with optimized weights | |
stocks_df['Optimized Portfolio'] = 0 | |
for ticker, weight in weights.items(): | |
stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight | |
# Plot Cumulative Returns of Optimized Portfolio | |
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100') | |
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \ | |
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns | |
# Interface ============================================= | |
with gr.Blocks() as demo: | |
with gr.Tab("Introduction"): | |
gr.HTML(TITLE_INTRO) | |
with gr.Tab("Your Portfolio"): | |
run_button_crewai.click( | |
fn=crewai_process, | |
inputs=research_topic_component, | |
outputs=gr.Textbox(label="Stock Analysis and Stocks") | |
queue=False | |
) | |
with gr.Tab("Portfolio Analysis"): | |
with gr.Blocks() as app: | |
with gr.Row(): | |
gr.HTML("<h1>Bohmian's Stock Portfolio Optimizer</h1>") | |
with gr.Row(): | |
start_date = gr.Textbox("2013-01-01", label="Start Date") | |
end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date") | |
with gr.Row(): | |
tickers_string = gr.Textbox("MA,META,V,AMZN,JPM,BA", | |
label='Enter all stock tickers to be included in portfolio separated \ | |
by commas WITHOUT spaces, e.g. "MA,META,V,AMZN,JPM,BA"') | |
btn = gr.Button("Get Optimized Portfolio") | |
with gr.Row(): | |
gr.HTML("<h3>Optimizied Portfolio Metrics</h3>") | |
with gr.Row(): | |
expected_annual_return = gr.Text(label="Expected Annual Return") | |
annual_volatility = gr.Text(label="Annual Volatility") | |
sharpe_ratio = gr.Text(label="Sharpe Ratio") | |
with gr.Row(): | |
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)") | |
weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker") | |
with gr.Row(): | |
fig_efficient_frontier = gr.Plot(label="Efficient Frontier") | |
fig_corr = gr.Plot(label="Correlation between Stocks") | |
with gr.Row(): | |
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks") | |
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100") | |
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string], | |
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \ | |
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns]) | |
with gr.Tab("Company Analysis"): | |
gr.HTML(TITLE1) | |
run_button_analysis.click( | |
fn=company_analysis, | |
inputs=[ | |
gr.Textbox(label="Enter your OpenAI API Key:", type="password"), | |
gr.Textbox(label="Enter the Company Name:") | |
], | |
outputs=[ | |
gr.Textbox(label="Language"), | |
gr.Textbox(label="Summary"), | |
gr.Textbox(label="Translated Email"), | |
gr.Textbox(label="Reply in English"), | |
gr.Textbox(label="Reply in Original Language") | |
] | |
) | |
with gr.Tab("Investment Strategy"): | |
gr.HTML(TITLE2) | |
gr.HTML(SUBTITLE) | |
gr.HTML(GETKEY) | |
with gr.Column(): | |
google_key_component.render() | |
chatbot_component.render() | |
with gr.Row(): | |
text_prompt_component.render() | |
upload_button_component.render() | |
run_button_component.render() | |
with gr.Accordion("Parameters", open=False): | |
temperature_component.render() | |
max_output_tokens_component.render() | |
stop_sequences_component.render() | |
with gr.Accordion("Advanced", open=False): | |
top_k_component.render() | |
top_p_component.render() | |
run_button_component.click( | |
fn=user, | |
inputs=user_inputs, | |
outputs=[text_prompt_component, chatbot_component], | |
queue=False | |
).then( | |
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
) | |
text_prompt_component.submit( | |
fn=user, | |
inputs=user_inputs, | |
outputs=[text_prompt_component, chatbot_component], | |
queue=False | |
).then( | |
fn=bot, inputs=bot_inputs, outputs=[chatbot_component], | |
) | |
upload_button_component.upload( | |
fn=upload, | |
inputs=[upload_button_component, chatbot_component], | |
outputs=[chatbot_component], | |
queue=False | |
) | |
with gr.Tab("Profit Prophet"): | |
gr.HTML(TITLE3) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Image(value = "resources/holder.png") | |
with gr.Column(scale=1): | |
gr.Image(value = "resources/holder.png") | |
demo.queue(max_size=99).launch(debug=False, show_error=True) |