Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,226 +1,321 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
from typing import List, Tuple,
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
-
import pandas as pd
|
| 6 |
-
|
| 7 |
-
# --- NLTK setup ----
|
| 8 |
import nltk
|
| 9 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 10 |
-
from nltk.corpus import stopwords
|
| 11 |
-
|
| 12 |
-
def ensure_nltk() -> None:
|
| 13 |
-
"""Download required NLTK data if missing (safe to call repeatedly)."""
|
| 14 |
-
try:
|
| 15 |
-
nltk.data.find("tokenizers/punkt")
|
| 16 |
-
except LookupError:
|
| 17 |
-
nltk.download("punkt", quiet=True)
|
| 18 |
-
try:
|
| 19 |
-
nltk.data.find("corpora/stopwords")
|
| 20 |
-
except LookupError:
|
| 21 |
-
nltk.download("stopwords", quiet=True)
|
| 22 |
-
|
| 23 |
-
ensure_nltk()
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"
|
| 38 |
-
|
| 39 |
-
"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
""
|
| 46 |
-
|
| 47 |
-
return ""
|
| 48 |
-
|
| 49 |
-
chunks = []
|
| 50 |
-
for f in files:
|
| 51 |
-
# Gradio v4 provides a dict-like object; support both path & name
|
| 52 |
-
path = getattr(f, "name", None) or (f.get("name") if isinstance(f, dict) else None)
|
| 53 |
-
if not path:
|
| 54 |
-
continue
|
| 55 |
-
|
| 56 |
-
ext = os.path.splitext(path)[1].lower()
|
| 57 |
-
if ext == ".txt":
|
| 58 |
-
with open(path, "r", encoding="utf-8", errors="ignore") as fh:
|
| 59 |
-
chunks.append(fh.read())
|
| 60 |
-
|
| 61 |
-
elif ext == ".docx" and HAS_DOCX:
|
| 62 |
-
try:
|
| 63 |
-
doc = Document(path)
|
| 64 |
-
chunks.append("\n".join(p.text for p in doc.paragraphs if p.text))
|
| 65 |
-
except Exception as e:
|
| 66 |
-
chunks.append(f"[Error reading {os.path.basename(path)}: {e}]")
|
| 67 |
-
|
| 68 |
-
elif ext == ".docx" and not HAS_DOCX:
|
| 69 |
-
chunks.append(f"[Install python-docx to read {os.path.basename(path)}]")
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
else:
|
| 75 |
-
chunks.append(f"[Skipped unsupported file: {os.path.basename(path)}]")
|
| 76 |
-
|
| 77 |
-
return "\n\n".join(chunks)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def normalize_tokens(tokens: List[str], clean: bool) -> List[str]:
|
| 81 |
-
"""Lowercase + stopword filter when clean=True; keep alphabetic tokens."""
|
| 82 |
-
if not clean:
|
| 83 |
-
return tokens
|
| 84 |
-
stops = set(stopwords.words("english"))
|
| 85 |
-
out = []
|
| 86 |
-
for t in tokens:
|
| 87 |
-
t = t.lower()
|
| 88 |
-
if t.isalpha() and t not in stops:
|
| 89 |
-
out.append(t)
|
| 90 |
-
return out
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
def tokenize_text_to_sentences(text: str, clean: bool) -> List[List[str]]:
|
| 94 |
-
"""Sentence tokenize, then word tokenize each sentence; optional cleaning."""
|
| 95 |
-
sents = sent_tokenize(text)
|
| 96 |
-
tokenized = [word_tokenize(s) for s in sents]
|
| 97 |
-
if clean:
|
| 98 |
-
tokenized = [normalize_tokens(toks, clean=True) for toks in tokenized]
|
| 99 |
-
return tokenized
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def build_bow(tokenized_sentences: List[List[str]]) -> pd.DataFrame:
|
| 103 |
-
"""Bag of Words as DataFrame (word, count), sorted by count desc."""
|
| 104 |
-
from collections import Counter
|
| 105 |
-
if not tokenized_sentences:
|
| 106 |
-
return pd.DataFrame(columns=["word", "count"])
|
| 107 |
-
all_words = [w for sent in tokenized_sentences for w in sent]
|
| 108 |
-
bow = Counter(all_words)
|
| 109 |
-
df = pd.DataFrame(sorted(bow.items(), key=lambda x: (-x[1], x[0])),
|
| 110 |
-
columns=["word", "count"])
|
| 111 |
-
return df
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def build_vector_for_sentence(
|
| 115 |
-
tokenized_sentences: List[List[str]], vocab: List[str], idx: int
|
| 116 |
-
) -> pd.DataFrame:
|
| 117 |
-
if not tokenized_sentences or not vocab:
|
| 118 |
-
return pd.DataFrame(columns=["word", "count"])
|
| 119 |
-
idx = max(0, min(idx, len(tokenized_sentences) - 1))
|
| 120 |
-
tokens = tokenized_sentences[idx]
|
| 121 |
-
counts = [tokens.count(w) for w in vocab]
|
| 122 |
-
return pd.DataFrame({"word": vocab, "count": counts})
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
ACTIONS = [
|
| 126 |
-
"Install NLTK",
|
| 127 |
-
"Tokenize sentences into words",
|
| 128 |
-
"Count word occurrences (Bag of Words)",
|
| 129 |
-
"Build a word frequency vector for any selected sentence",
|
| 130 |
-
]
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
def
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
)
|
|
|
|
|
|
|
|
|
|
| 140 |
"""
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
"""
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# Always tokenize once; later steps reuse results
|
| 156 |
-
tokenized = tokenize_text_to_sentences(full_text, clean=clean)
|
| 157 |
-
|
| 158 |
-
# Prepare tables (avoid None to keep Gradio happy)
|
| 159 |
-
tokens_df = pd.DataFrame(
|
| 160 |
-
{
|
| 161 |
-
"sentence #": list(range(1, len(tokenized) + 1)),
|
| 162 |
-
"tokens": [" ".join(toks) if toks else "" for toks in tokenized],
|
| 163 |
-
}
|
| 164 |
-
)
|
| 165 |
-
bow_df = pd.DataFrame(columns=["word", "count"])
|
| 166 |
-
vector_df = pd.DataFrame(columns=["word", "count"])
|
| 167 |
-
|
| 168 |
-
# Route per action
|
| 169 |
-
if action == "Install NLTK":
|
| 170 |
-
status = "NLTK is ready (punkt + stopwords ensured)."
|
| 171 |
-
|
| 172 |
-
elif action == "Tokenize sentences into words":
|
| 173 |
-
status = f"Tokenized {len(tokenized)} sentences."
|
| 174 |
-
|
| 175 |
-
elif action == "Count word occurrences (Bag of Words)":
|
| 176 |
-
bow_df = build_bow(tokenized)
|
| 177 |
-
status = f"Bag of Words built with {len(bow_df)} unique terms."
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
else:
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
with gr.Blocks(title="NLTK
|
|
|
|
| 194 |
gr.Markdown(
|
| 195 |
-
"
|
| 196 |
-
"
|
| 197 |
-
"Toggle cleaning to lowercase + remove English stopwords."
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
text_in = gr.Textbox(label="Input Text", lines=10, value=SAMPLE_TEXT)
|
| 201 |
-
files_in = gr.File(
|
| 202 |
-
label="Upload .txt / .docx (optional)",
|
| 203 |
-
file_count="multiple",
|
| 204 |
-
file_types=[".txt", ".docx"] if HAS_DOCX else [".txt"],
|
| 205 |
)
|
| 206 |
|
| 207 |
with gr.Row():
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
|
|
|
| 226 |
demo.launch()
|
|
|
|
| 1 |
+
import io
|
| 2 |
import os
|
| 3 |
+
from typing import List, Tuple, Union
|
| 4 |
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 6 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# -----------------------------------------------------------------------------
|
| 9 |
+
# Force NLTK data into a local folder to avoid permissions/network issues
|
| 10 |
+
# -----------------------------------------------------------------------------
|
| 11 |
+
NLTK_DATA_DIR = os.path.join(os.path.dirname(__file__), "nltk_data")
|
| 12 |
+
os.makedirs(NLTK_DATA_DIR, exist_ok=True)
|
| 13 |
+
os.environ["NLTK_DATA"] = NLTK_DATA_DIR
|
| 14 |
+
if NLTK_DATA_DIR not in nltk.data.path:
|
| 15 |
+
nltk.data.path.insert(0, NLTK_DATA_DIR)
|
| 16 |
+
|
| 17 |
+
# Cover old/new resource names across recent NLTK releases
|
| 18 |
+
NLTK_PACKAGES = [
|
| 19 |
+
# Tokenizers
|
| 20 |
+
"punkt", "punkt_tab",
|
| 21 |
+
# Stopwords / Lemmas
|
| 22 |
+
"stopwords", "wordnet", "omw-1.4",
|
| 23 |
+
# POS taggers (old and new english-specific)
|
| 24 |
+
"averaged_perceptron_tagger", "averaged_perceptron_tagger_eng",
|
| 25 |
+
# NE chunkers (old and new)
|
| 26 |
+
"maxent_ne_chunker", "maxent_ne_chunker_tab",
|
| 27 |
+
# Word lists used by NE chunker
|
| 28 |
+
"words",
|
| 29 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def ensure_nltk_resources() -> str:
|
| 32 |
+
msgs = []
|
| 33 |
+
for pkg in NLTK_PACKAGES:
|
| 34 |
+
try:
|
| 35 |
+
# idempotent; will skip if already present
|
| 36 |
+
ok = nltk.download(pkg, download_dir=NLTK_DATA_DIR, quiet=True)
|
| 37 |
+
msgs.append(f"OK: {pkg}" if ok else f"Skipped: {pkg}")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
msgs.append(f"Failed {pkg}: {e}")
|
| 40 |
+
return " | ".join(msgs) if msgs else "Resources checked."
|
| 41 |
+
|
| 42 |
+
# Import after setting up data path
|
| 43 |
+
from nltk.tokenize import word_tokenize
|
| 44 |
+
from nltk.corpus import stopwords
|
| 45 |
+
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
| 46 |
+
from nltk import pos_tag
|
| 47 |
+
from nltk.chunk import ne_chunk
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# -----------------------------------------------------------------------------
|
| 51 |
+
# File reading helpers
|
| 52 |
+
# -----------------------------------------------------------------------------
|
| 53 |
+
def _read_bytes(path: str) -> bytes:
|
| 54 |
+
with open(path, "rb") as f:
|
| 55 |
+
return f.read()
|
| 56 |
|
| 57 |
+
def _extract_from_docx_bytes(b: bytes) -> str:
|
| 58 |
+
try:
|
| 59 |
+
import docx # python-docx
|
| 60 |
+
except ImportError:
|
| 61 |
+
return "ERROR: python-docx not installed. Add 'python-docx' to requirements.txt."
|
| 62 |
+
f = io.BytesIO(b)
|
| 63 |
+
doc = docx.Document(f)
|
| 64 |
+
return "\n".join(p.text for p in doc.paragraphs)
|
| 65 |
+
|
| 66 |
+
def _extract_from_doc_bytes(b: bytes) -> str:
|
| 67 |
"""
|
| 68 |
+
Best-effort .doc (binary) support:
|
| 69 |
+
- If 'textract' is installed, use it.
|
| 70 |
+
- Otherwise, return a clear message telling the user to convert to .docx.
|
| 71 |
"""
|
| 72 |
+
try:
|
| 73 |
+
import textract # optional
|
| 74 |
+
except Exception:
|
| 75 |
+
return ("ERROR: .doc files require optional dependency 'textract' "
|
| 76 |
+
"and system tools. Either `pip install textract` or convert "
|
| 77 |
+
"the file to .docx and try again.")
|
| 78 |
+
try:
|
| 79 |
+
text = textract.process(io.BytesIO(b)) # may still fail if system tools missing
|
| 80 |
+
return text.decode("utf-8", errors="replace")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return (f"ERROR: Could not extract text from .doc with textract: {e}. "
|
| 83 |
+
"Please convert the file to .docx and try again.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
def read_file(upload: Union[str, dict, "gr.File", None]) -> str:
|
| 86 |
+
"""
|
| 87 |
+
Reads text from Gradio's File input. Supports .txt, .docx, and (optionally) .doc.
|
| 88 |
+
Works if `upload` is a path (str), a dict, or a file-like with .name/.read().
|
| 89 |
+
"""
|
| 90 |
+
if upload is None:
|
| 91 |
+
return ""
|
| 92 |
|
| 93 |
+
# Normalize to name/path/bytes
|
| 94 |
+
name, path, content = None, None, None
|
| 95 |
+
|
| 96 |
+
if isinstance(upload, str):
|
| 97 |
+
path = upload
|
| 98 |
+
name = os.path.basename(path)
|
| 99 |
+
content = _read_bytes(path)
|
| 100 |
+
elif isinstance(upload, dict):
|
| 101 |
+
# gradio sometimes passes {'name': '/tmp/..', 'orig_name': 'foo.txt', ...}
|
| 102 |
+
path = upload.get("name") or upload.get("path")
|
| 103 |
+
name = upload.get("orig_name") or (os.path.basename(path) if path else "")
|
| 104 |
+
if path and os.path.exists(path):
|
| 105 |
+
content = _read_bytes(path)
|
| 106 |
else:
|
| 107 |
+
# file-like
|
| 108 |
+
name = getattr(upload, "name", "") or ""
|
| 109 |
+
path = getattr(upload, "name", None)
|
| 110 |
+
try:
|
| 111 |
+
if path and os.path.exists(path):
|
| 112 |
+
content = _read_bytes(path)
|
| 113 |
+
else:
|
| 114 |
+
content = upload.read()
|
| 115 |
+
except Exception:
|
| 116 |
+
if path and os.path.exists(path):
|
| 117 |
+
content = _read_bytes(path)
|
| 118 |
+
|
| 119 |
+
if not name:
|
| 120 |
+
name = "(uploaded)"
|
| 121 |
+
if content is None:
|
| 122 |
+
return "ERROR: Could not read uploaded file."
|
| 123 |
+
|
| 124 |
+
ext = os.path.splitext(name)[1].lower()
|
| 125 |
+
|
| 126 |
+
if ext == ".txt":
|
| 127 |
+
# try common encodings
|
| 128 |
+
for enc in ("utf-8", "utf-16", "latin-1"):
|
| 129 |
+
try:
|
| 130 |
+
return content.decode(enc)
|
| 131 |
+
except UnicodeDecodeError:
|
| 132 |
+
continue
|
| 133 |
+
return "ERROR: Could not decode text file. Try UTF-8/plain text."
|
| 134 |
+
|
| 135 |
+
if ext == ".docx":
|
| 136 |
+
return _extract_from_docx_bytes(content)
|
| 137 |
+
|
| 138 |
+
if ext == ".doc":
|
| 139 |
+
return _extract_from_doc_bytes(content)
|
| 140 |
+
|
| 141 |
+
return f"Unsupported file type: {ext}. Please upload .txt, .docx, or .doc."
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# -----------------------------------------------------------------------------
|
| 145 |
+
# NLP helpers
|
| 146 |
+
# -----------------------------------------------------------------------------
|
| 147 |
+
def extract_ner(ne_tree) -> List[Tuple[str, str]]:
|
| 148 |
+
entities = []
|
| 149 |
+
for subtree in ne_tree:
|
| 150 |
+
if hasattr(subtree, "label"):
|
| 151 |
+
label = subtree.label()
|
| 152 |
+
text = " ".join(token for token, _ in subtree.leaves())
|
| 153 |
+
entities.append((text, label))
|
| 154 |
+
return entities
|
| 155 |
+
|
| 156 |
+
def process_text(raw_text: str, steps: List[str]) -> str:
|
| 157 |
+
if not raw_text or raw_text.strip() == "":
|
| 158 |
+
return "⚠️ No text provided."
|
| 159 |
+
|
| 160 |
+
# Ensure data locally (quiet)
|
| 161 |
+
ensure_nltk_resources()
|
| 162 |
+
|
| 163 |
+
report_lines = []
|
| 164 |
+
text = raw_text
|
| 165 |
+
|
| 166 |
+
# 1) Tokenize (required by later steps)
|
| 167 |
+
tokens = None
|
| 168 |
+
if "Tokenize text." in steps or any(
|
| 169 |
+
s in steps for s in [
|
| 170 |
+
"Remove stopwords.", "Stem words.", "Lemmatize words.",
|
| 171 |
+
"Tag parts of speech.", "Extract named entities."
|
| 172 |
+
]
|
| 173 |
+
):
|
| 174 |
+
tokens = word_tokenize(text)
|
| 175 |
+
if "Tokenize text." in steps:
|
| 176 |
+
report_lines.append("### Tokens")
|
| 177 |
+
report_lines.append(f"`{tokens}`\n")
|
| 178 |
+
|
| 179 |
+
# 2) Stopwords
|
| 180 |
+
filtered_tokens = tokens
|
| 181 |
+
if "Remove stopwords." in steps:
|
| 182 |
+
sw = set(stopwords.words("english"))
|
| 183 |
+
filtered_tokens = [w for w in (tokens or []) if w.lower() not in sw]
|
| 184 |
+
report_lines.append("### After Stopword Removal")
|
| 185 |
+
report_lines.append(f"`{filtered_tokens}`\n")
|
| 186 |
+
|
| 187 |
+
# 3) Stemming
|
| 188 |
+
stemmed_tokens = filtered_tokens
|
| 189 |
+
if "Stem words." in steps:
|
| 190 |
+
stemmer = PorterStemmer()
|
| 191 |
+
stemmed_tokens = [stemmer.stem(w) for w in (filtered_tokens or [])]
|
| 192 |
+
report_lines.append("### Stemmed Tokens (Porter)")
|
| 193 |
+
report_lines.append(f"`{stemmed_tokens}`\n")
|
| 194 |
+
|
| 195 |
+
# 4) Lemmatization
|
| 196 |
+
lemmatized_tokens = stemmed_tokens if stemmed_tokens is not None else filtered_tokens
|
| 197 |
+
if "Lemmatize words." in steps:
|
| 198 |
+
lemmatizer = WordNetLemmatizer()
|
| 199 |
+
lemmatized_tokens = [lemmatizer.lemmatize(w) for w in (filtered_tokens or [])]
|
| 200 |
+
report_lines.append("### Lemmatized Tokens (WordNet)")
|
| 201 |
+
report_lines.append(f"`{lemmatized_tokens}`\n")
|
| 202 |
+
|
| 203 |
+
# 5) POS Tagging
|
| 204 |
+
pos_tags_val = None
|
| 205 |
+
if "Tag parts of speech." in steps or "Extract named entities." in steps:
|
| 206 |
+
base_for_tagging = lemmatized_tokens if lemmatized_tokens is not None else (tokens or [])
|
| 207 |
+
pos_tags_val = pos_tag(base_for_tagging)
|
| 208 |
+
if "Tag parts of speech." in steps:
|
| 209 |
+
report_lines.append("### Part-of-Speech Tags")
|
| 210 |
+
rows = ["| Token | POS |", "|---|---|"]
|
| 211 |
+
rows += [f"| {t} | {p} |" for (t, p) in pos_tags_val]
|
| 212 |
+
report_lines.append("\n".join(rows) + "\n")
|
| 213 |
+
|
| 214 |
+
# 6) NER
|
| 215 |
+
if "Extract named entities." in steps:
|
| 216 |
+
if not pos_tags_val:
|
| 217 |
+
base_for_tagging = lemmatized_tokens if lemmatized_tokens is not None else (tokens or [])
|
| 218 |
+
pos_tags_val = pos_tag(base_for_tagging)
|
| 219 |
+
ne_tree = ne_chunk(pos_tags_val, binary=False)
|
| 220 |
+
ner_pairs = extract_ner(ne_tree)
|
| 221 |
+
|
| 222 |
+
report_lines.append("### Named Entities")
|
| 223 |
+
if ner_pairs:
|
| 224 |
+
rows = ["| Entity | Label |", "|---|---|"]
|
| 225 |
+
rows += [f"| {ent} | {lbl} |" for (ent, lbl) in ner_pairs]
|
| 226 |
+
report_lines.append("\n".join(rows) + "\n")
|
| 227 |
+
else:
|
| 228 |
+
report_lines.append("_No named entities found._\n")
|
| 229 |
+
|
| 230 |
+
return "\n".join(report_lines).strip() or "No steps selected."
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# -----------------------------------------------------------------------------
|
| 234 |
+
# Gradio UI
|
| 235 |
+
# -----------------------------------------------------------------------------
|
| 236 |
+
MENU = [
|
| 237 |
+
"Install and download required resources.",
|
| 238 |
+
"Tokenize text.",
|
| 239 |
+
"Remove stopwords.",
|
| 240 |
+
"Stem words.",
|
| 241 |
+
"Lemmatize words.",
|
| 242 |
+
"Tag parts of speech.",
|
| 243 |
+
"Extract named entities.",
|
| 244 |
+
]
|
| 245 |
|
| 246 |
+
DEFAULT_TEXT = (
|
| 247 |
+
"NLTK is a powerful library for text processing. "
|
| 248 |
+
"Barack Obama served as the 44th President of the United States and lived in Washington, D.C."
|
| 249 |
+
)
|
| 250 |
|
| 251 |
+
with gr.Blocks(title="NLTK Text Processing Toolkit") as demo:
|
| 252 |
+
gr.Markdown("# NLTK Text Processing Toolkit")
|
| 253 |
gr.Markdown(
|
| 254 |
+
"Type or paste text, or drop a `.txt`/`.docx`/`.doc` file. "
|
| 255 |
+
"Select steps and click **Process**. Use **Install/Download Resources** first if needed."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
)
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
+
with gr.Column():
|
| 260 |
+
text_in = gr.Textbox(
|
| 261 |
+
label="Text Input",
|
| 262 |
+
lines=10,
|
| 263 |
+
value=DEFAULT_TEXT,
|
| 264 |
+
placeholder="Type or paste text here..."
|
| 265 |
+
)
|
| 266 |
+
file_in = gr.File(
|
| 267 |
+
label="...or drop a .txt / .docx / .doc file",
|
| 268 |
+
file_types=[".txt", ".docx", ".doc"]
|
| 269 |
+
)
|
| 270 |
+
steps_in = gr.CheckboxGroup(
|
| 271 |
+
choices=MENU,
|
| 272 |
+
value=[
|
| 273 |
+
"Tokenize text.",
|
| 274 |
+
"Remove stopwords.",
|
| 275 |
+
"Lemmatize words.",
|
| 276 |
+
"Tag parts of speech.",
|
| 277 |
+
"Extract named entities.",
|
| 278 |
+
],
|
| 279 |
+
label="Menu (choose one or more)"
|
| 280 |
+
)
|
| 281 |
+
with gr.Row():
|
| 282 |
+
install_btn = gr.Button("Install/Download Resources")
|
| 283 |
+
process_btn = gr.Button("Process", variant="primary")
|
| 284 |
+
clear_btn = gr.Button("Clear")
|
| 285 |
+
|
| 286 |
+
with gr.Column():
|
| 287 |
+
status_out = gr.Textbox(label="Status / Logs", interactive=False)
|
| 288 |
+
result_out = gr.Markdown(label="Results")
|
| 289 |
+
|
| 290 |
+
# Button callbacks
|
| 291 |
+
def on_install():
|
| 292 |
+
try:
|
| 293 |
+
return ensure_nltk_resources()
|
| 294 |
+
except Exception as e:
|
| 295 |
+
return f"Install error: {e}"
|
| 296 |
+
|
| 297 |
+
def on_process(text, file, steps):
|
| 298 |
+
try:
|
| 299 |
+
text = (text or "").strip()
|
| 300 |
+
file_text = read_file(file) if file is not None else ""
|
| 301 |
+
if not text and file_text:
|
| 302 |
+
text = file_text
|
| 303 |
+
|
| 304 |
+
if file_text.startswith("ERROR:") or file_text.startswith("Unsupported file type:"):
|
| 305 |
+
return file_text
|
| 306 |
+
|
| 307 |
+
return process_text(text, steps or [])
|
| 308 |
+
except Exception:
|
| 309 |
+
import traceback
|
| 310 |
+
return "### Error\n```\n" + "".join(traceback.format_exc()) + "\n```"
|
| 311 |
+
|
| 312 |
+
def on_clear():
|
| 313 |
+
return "", ""
|
| 314 |
+
|
| 315 |
+
install_btn.click(fn=on_install, inputs=None, outputs=status_out)
|
| 316 |
+
process_btn.click(fn=on_process, inputs=[text_in, file_in, steps_in], outputs=result_out)
|
| 317 |
+
clear_btn.click(fn=on_clear, inputs=None, outputs=[status_out, result_out])
|
| 318 |
|
| 319 |
if __name__ == "__main__":
|
| 320 |
+
# If you need external access, set server_name="0.0.0.0"
|
| 321 |
demo.launch()
|