YSA-Larkin-Comm / app.py
eagle0504's picture
additional ai judge updated
8ab5c31
raw
history blame
5.81 kB
import os
import string
from typing import Any, Dict, List, Tuple, Union
import chromadb
import numpy as np
import openai
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from langchain.document_loaders import TextLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from scipy.spatial.distance import cosine
from utils.helper_functions import *
openai.api_key = os.environ["OPENAI_API_KEY"]
# Load the dataset from a provided source.
dataset = load_dataset(
"eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted"
)
# Initialize a new client for ChromeDB.
client = chromadb.Client()
# Generate a random number between 1 billion and 10 billion.
random_number: int = np.random.randint(low=1e9, high=1e10)
# Generate a random string consisting of 10 uppercase letters and digits.
random_string: str = "".join(
np.random.choice(list(string.ascii_uppercase + string.digits), size=10)
)
# Combine the random number and random string into one identifier.
combined_string: str = f"{random_number}{random_string}"
# Create a new collection in ChromeDB with the combined string as its name.
collection = client.create_collection(combined_string)
# Embed and store the first N supports for this demo
L = len(dataset["train"]["questions"])
collection.add(
ids=[str(i) for i in range(0, L)], # IDs are just strings
documents=dataset["train"]["questions"], # Enter questions here
metadatas=[{"type": "support"} for _ in range(0, L)],
)
st.title("Youth Homelessness Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.sidebar.markdown(
"""
### Instructions:
This app guides you through YSA's website, utilizing a RAG-ready Q&A dataset [here](https://huggingface.co/datasets/eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted) for chatbot assistance. 🤖 Enter a question, and it finds similar ones in the database, offering answers with a distance score to gauge relevance—the lower the score, the closer the match. 🎯 For better accuracy and to reduce errors, user feedback helps refine the database. ✨
"""
)
st.sidebar.success(
"Please enter a distance threshold (we advise to set it around 0.2)."
)
special_threshold = st.sidebar.number_input(
"Insert a number", value=0.2, placeholder="Type a number..."
) # 0.3
clear_button = st.sidebar.button("Clear Conversation", key="clear")
if clear_button:
st.session_state.messages = []
# React to user input
if prompt := st.chat_input("Tell me about YSA"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
question = prompt
with st.spinner("Wait for it..."):
results = collection.query(query_texts=question, n_results=5)
idx = results["ids"][0]
idx = [int(i) for i in idx]
ref = pd.DataFrame(
{
"idx": idx,
"questions": [dataset["train"]["questions"][i] for i in idx],
"answers": [dataset["train"]["answers"][i] for i in idx],
"distances": results["distances"][0],
}
)
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
filtered_ref = ref[ref["distances"] < special_threshold]
if filtered_ref.shape[0] > 0:
st.success("There are highly relevant information in our database.")
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
final_ref = filtered_ref
else:
st.warning(
"The database may not have relevant information to help your question so please be aware of hallucinations."
)
ref_from_db_search = ref["answers"].str.cat(sep=" ")
final_ref = ref
try:
llm_response = llama2_7b_ysa(question)
except:
llm_response = "Sorry, the inference endpoint is temporarily down. 😔"
finetuned_llm_guess = ["from_llm", question, llm_response, 0]
final_ref.loc[-1] = finetuned_llm_guess
final_ref.index = final_ref.index + 1
# add ai judge as additional rating
independent_ai_judge_score = []
for i in range(final_ref.shape[0]):
this_content = final_ref["answers"][i]
this_score = calculate_sts_openai_score(question, this_content)
independent_ai_judge_score.append(this_score)
final_ref["ai_judge"] = independent_ai_judge_score
engineered_prompt = f"""
Based on the context: {ref_from_db_search},
answer the user question: {question}.
Answer the question directly (don't say "based on the context, ...")
"""
answer = call_chatgpt(engineered_prompt)
response = answer
# Display assistant response in chat message container
with st.chat_message("assistant"):
with st.spinner("Wait for it..."):
st.markdown(response)
with st.expander("See reference:"):
st.table(final_ref)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# st.session_state.messages.append(
# {"role": "assistant", "content": final_ref.to_json()}
# )