Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,691 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces
|
| 4 |
-
--------------------------------------------------------------------
|
| 5 |
-
This script integrates a full Quranic data processing and training pipeline
|
| 6 |
-
into a Gradio interface endpoint. It is optimized for CPU/GPU-based training
|
| 7 |
-
on Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental
|
| 8 |
-
training, memory management, and gradient checkpointing to efficiently update
|
| 9 |
-
Google's Gemma-2-2b model with Quranic data.
|
| 10 |
-
|
| 11 |
-
Requirements:
|
| 12 |
-
- Transformers (>=4.42.0)
|
| 13 |
-
- Gradio (>=5.12.0)
|
| 14 |
-
- PyTorch (==2.2.2)
|
| 15 |
-
- psutil (==5.9.5)
|
| 16 |
-
- Accelerate (>=0.26.0)
|
| 17 |
-
- Hugging Face PRO subscription with ZeroGPU enabled (ensure your HF token is set as an environment variable HF_TOKEN)
|
| 18 |
-
- Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces
|
| 19 |
-
- Input data files placed in the project root.
|
| 20 |
-
- Sufficient storage in "working_directory"
|
| 21 |
-
|
| 22 |
-
Author: [M-Saddam Hussain]
|
| 23 |
-
Date: March 2025
|
| 24 |
-
Data References: [Tanzil.net, IslamSource, QuranicCorpus]
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
-
import json
|
| 28 |
-
import logging
|
| 29 |
-
import os
|
| 30 |
-
import traceback
|
| 31 |
-
import gc
|
| 32 |
-
import time
|
| 33 |
-
import psutil
|
| 34 |
-
import math
|
| 35 |
-
import shutil
|
| 36 |
-
from datetime import datetime
|
| 37 |
-
from typing import Dict, List, Optional
|
| 38 |
-
from dataclasses import dataclass, asdict
|
| 39 |
-
|
| 40 |
-
import torch
|
| 41 |
-
# Limit PyTorch threads for CPU stability.
|
| 42 |
-
torch.set_num_threads(8)
|
| 43 |
-
|
| 44 |
-
from torch.utils.data import Dataset
|
| 45 |
-
from transformers import (
|
| 46 |
-
AutoTokenizer,
|
| 47 |
-
AutoModelForCausalLM,
|
| 48 |
-
TrainingArguments,
|
| 49 |
-
Trainer,
|
| 50 |
-
DataCollatorForLanguageModeling,
|
| 51 |
-
__version__ as transformers_version
|
| 52 |
-
)
|
| 53 |
-
from threading import Lock
|
| 54 |
-
|
| 55 |
-
import gradio as gr
|
| 56 |
-
import spaces
|
| 57 |
-
|
| 58 |
-
# Check for minimum required Transformers version for custom model support
|
| 59 |
-
MIN_TRANSFORMERS_VERSION = "4.42.0"
|
| 60 |
-
if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))):
|
| 61 |
-
logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION} for proper support of the 'gemma2' architecture.")
|
| 62 |
-
|
| 63 |
-
# Configure logging
|
| 64 |
-
logging.basicConfig(
|
| 65 |
-
level=logging.INFO,
|
| 66 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 67 |
-
handlers=[
|
| 68 |
-
logging.FileHandler('pipeline.log'),
|
| 69 |
-
logging.StreamHandler()
|
| 70 |
-
]
|
| 71 |
-
)
|
| 72 |
-
logger = logging.getLogger(__name__)
|
| 73 |
-
|
| 74 |
-
def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
|
| 75 |
-
"""
|
| 76 |
-
Check memory usage; if usage is high or available memory is low,
|
| 77 |
-
force garbage collection and sleep briefly.
|
| 78 |
-
"""
|
| 79 |
-
vm = psutil.virtual_memory()
|
| 80 |
-
used_percent = vm.percent
|
| 81 |
-
available_mb = vm.available / (1024 * 1024)
|
| 82 |
-
logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
|
| 83 |
-
if used_percent > threshold_percent or available_mb < min_available_mb:
|
| 84 |
-
logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
|
| 85 |
-
gc.collect()
|
| 86 |
-
time.sleep(sleep_duration)
|
| 87 |
-
|
| 88 |
-
def manage_gpu_resources(sleep_duration: int = 5):
|
| 89 |
-
"""
|
| 90 |
-
Checks GPU memory and empties cache if necessary.
|
| 91 |
-
"""
|
| 92 |
-
if torch.cuda.is_available():
|
| 93 |
-
allocated = torch.cuda.memory_allocated() / (1024 * 1024)
|
| 94 |
-
cached = torch.cuda.memory_reserved() / (1024 * 1024)
|
| 95 |
-
logger.info(f"GPU Memory Allocated: {allocated:.2f} MB, Reserved: {cached:.2f} MB")
|
| 96 |
-
torch.cuda.empty_cache()
|
| 97 |
-
time.sleep(sleep_duration)
|
| 98 |
-
|
| 99 |
-
def zip_checkpoint(checkpoint_dir: str) -> str:
|
| 100 |
-
"""
|
| 101 |
-
Zips the checkpoint directory and returns the path to the zip file.
|
| 102 |
-
"""
|
| 103 |
-
zip_file = checkpoint_dir + ".zip"
|
| 104 |
-
# Remove existing zip if it exists
|
| 105 |
-
if os.path.exists(zip_file):
|
| 106 |
-
os.remove(zip_file)
|
| 107 |
-
shutil.make_archive(checkpoint_dir, 'zip', checkpoint_dir)
|
| 108 |
-
return os.path.basename(zip_file)
|
| 109 |
-
|
| 110 |
-
@dataclass
|
| 111 |
-
class WordAnalysis:
|
| 112 |
-
"""Structured representation of word-level analysis"""
|
| 113 |
-
arabic: str
|
| 114 |
-
translation: str
|
| 115 |
-
position: str
|
| 116 |
-
morphology: Dict
|
| 117 |
-
features: List[str]
|
| 118 |
-
root: str
|
| 119 |
-
location: str
|
| 120 |
-
metadata: Dict
|
| 121 |
-
|
| 122 |
-
@dataclass
|
| 123 |
-
class VerseData:
|
| 124 |
-
"""Structured representation of verse-level data"""
|
| 125 |
-
chapter: int
|
| 126 |
-
verse: int
|
| 127 |
-
arabic_text: str
|
| 128 |
-
translation: str
|
| 129 |
-
words: List[WordAnalysis]
|
| 130 |
-
metadata: Dict
|
| 131 |
-
|
| 132 |
-
class QuranicDataset(Dataset):
|
| 133 |
-
"""Custom dataset for Quranic text training."""
|
| 134 |
-
def __init__(self, processed_data: List[Dict], tokenizer):
|
| 135 |
-
self.examples = []
|
| 136 |
-
self.tokenizer = tokenizer
|
| 137 |
-
for verse_data in processed_data:
|
| 138 |
-
self.examples.extend(self._create_training_examples(verse_data))
|
| 139 |
-
|
| 140 |
-
def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
|
| 141 |
-
examples = []
|
| 142 |
-
text_block = (
|
| 143 |
-
f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
|
| 144 |
-
f"Arabic: {verse_data['arabic_text']}\n"
|
| 145 |
-
f"Translation: {verse_data['translation']}\n"
|
| 146 |
-
"Morphological Analysis:\n"
|
| 147 |
-
)
|
| 148 |
-
for word in verse_data['words']:
|
| 149 |
-
text_block += (
|
| 150 |
-
f"[WORD] {word['arabic']}\n"
|
| 151 |
-
f"Root: {word['root']}\n"
|
| 152 |
-
f"Features: {', '.join(word['features'])}\n"
|
| 153 |
-
)
|
| 154 |
-
examples.append(self._format_example(text_block))
|
| 155 |
-
return examples
|
| 156 |
-
|
| 157 |
-
def _format_example(self, text: str) -> Dict:
|
| 158 |
-
encodings = self.tokenizer(
|
| 159 |
-
text,
|
| 160 |
-
truncation=True,
|
| 161 |
-
max_length=64,
|
| 162 |
-
padding="max_length",
|
| 163 |
-
return_tensors="pt"
|
| 164 |
-
)
|
| 165 |
-
return {
|
| 166 |
-
"input_ids": encodings["input_ids"][0],
|
| 167 |
-
"attention_mask": encodings["attention_mask"][0]
|
| 168 |
-
}
|
| 169 |
-
|
| 170 |
-
def __len__(self):
|
| 171 |
-
return len(self.examples)
|
| 172 |
-
|
| 173 |
-
def __getitem__(self, idx):
|
| 174 |
-
return self.examples[idx]
|
| 175 |
-
|
| 176 |
-
class QuranicDataProcessor:
|
| 177 |
-
"""Processes Quranic data into structured training examples."""
|
| 178 |
-
def __init__(self, source_dir: str, output_dir: str):
|
| 179 |
-
self.source_dir = source_dir
|
| 180 |
-
self.output_dir = output_dir
|
| 181 |
-
self.morphological_data: Dict[str, Dict] = {}
|
| 182 |
-
self.word_by_word_data: Dict[str, List[str]] = {}
|
| 183 |
-
self.translation_data: Dict[str, str] = {}
|
| 184 |
-
self.processing_lock = Lock()
|
| 185 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 186 |
-
os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
|
| 187 |
-
os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
|
| 188 |
-
os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
|
| 189 |
-
logger.info(f"Initialized processor with source dir: {source_dir}")
|
| 190 |
-
|
| 191 |
-
def load_source_files(self) -> bool:
|
| 192 |
-
"""Loads morphological, translation, and word-by-word data from project root."""
|
| 193 |
-
try:
|
| 194 |
-
logger.info("Loading morphological data...")
|
| 195 |
-
morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
|
| 196 |
-
with open(morph_path, 'r', encoding='utf-8') as f:
|
| 197 |
-
next(f)
|
| 198 |
-
for line in f:
|
| 199 |
-
if line.strip() and not line.startswith('#'):
|
| 200 |
-
parts = line.strip().split('\t')
|
| 201 |
-
if len(parts) >= 4:
|
| 202 |
-
location = parts[0].strip('()')
|
| 203 |
-
self.morphological_data[location] = {
|
| 204 |
-
'form': parts[1],
|
| 205 |
-
'tag': parts[2],
|
| 206 |
-
'features': parts[3]
|
| 207 |
-
}
|
| 208 |
-
logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
|
| 209 |
-
logger.info("Loading translation data...")
|
| 210 |
-
trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
|
| 211 |
-
with open(trans_path, 'r', encoding='utf-8') as f:
|
| 212 |
-
next(f)
|
| 213 |
-
for line in f:
|
| 214 |
-
if line.strip():
|
| 215 |
-
parts = line.strip().split('|')
|
| 216 |
-
if len(parts) >= 3:
|
| 217 |
-
key = f"{parts[0]}:{parts[1]}"
|
| 218 |
-
self.translation_data[key] = parts[2].strip()
|
| 219 |
-
logger.info(f"Loaded {len(self.translation_data)} verse translations")
|
| 220 |
-
logger.info("Loading word-by-word data...")
|
| 221 |
-
word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
|
| 222 |
-
with open(word_path, 'r', encoding='utf-8-sig') as f:
|
| 223 |
-
lines = [line.strip() for line in f if line.strip()]
|
| 224 |
-
sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
|
| 225 |
-
if len(lines) != len(sorted_keys):
|
| 226 |
-
logger.warning("Mismatch between word-by-word file and translation data")
|
| 227 |
-
for i, verse_key in enumerate(sorted_keys):
|
| 228 |
-
if i < len(lines):
|
| 229 |
-
words = [w.strip() for w in lines[i].split('|') if w.strip()]
|
| 230 |
-
self.word_by_word_data[verse_key] = words
|
| 231 |
-
logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
|
| 232 |
-
return True
|
| 233 |
-
except Exception as e:
|
| 234 |
-
logger.error(f"Error loading source files: {str(e)}")
|
| 235 |
-
logger.error(traceback.format_exc())
|
| 236 |
-
return False
|
| 237 |
-
|
| 238 |
-
def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
|
| 239 |
-
"""Processes a single verse into structured format."""
|
| 240 |
-
try:
|
| 241 |
-
verse_ref = f"{chapter}:{verse}"
|
| 242 |
-
logger.info(f"Processing verse {verse_ref}")
|
| 243 |
-
translation = self.translation_data.get(verse_ref)
|
| 244 |
-
if not translation:
|
| 245 |
-
logger.warning(f"No translation for verse {verse_ref}")
|
| 246 |
-
return None
|
| 247 |
-
verse_word_list = self.word_by_word_data.get(verse_ref, [])
|
| 248 |
-
if not verse_word_list:
|
| 249 |
-
logger.warning(f"No word-by-word data for verse {verse_ref}")
|
| 250 |
-
return None
|
| 251 |
-
verse_words: List[WordAnalysis] = []
|
| 252 |
-
arabic_text = ""
|
| 253 |
-
for pos in range(1, len(verse_word_list) + 1):
|
| 254 |
-
pattern = f"{chapter}:{verse}:{pos}:"
|
| 255 |
-
matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
|
| 256 |
-
if not matching_entries:
|
| 257 |
-
logger.debug(f"No morphological data for {pattern}")
|
| 258 |
-
continue
|
| 259 |
-
combined_form = " ".join(entry['form'] for entry in matching_entries)
|
| 260 |
-
combined_features = []
|
| 261 |
-
root = ""
|
| 262 |
-
for entry in matching_entries:
|
| 263 |
-
features = entry['features'].split('|')
|
| 264 |
-
combined_features.extend(features)
|
| 265 |
-
if not root:
|
| 266 |
-
for f in features:
|
| 267 |
-
if 'ROOT:' in f:
|
| 268 |
-
root = f.split('ROOT:')[1]
|
| 269 |
-
break
|
| 270 |
-
word_translation = verse_word_list[pos - 1]
|
| 271 |
-
word = WordAnalysis(
|
| 272 |
-
arabic=combined_form,
|
| 273 |
-
translation=word_translation,
|
| 274 |
-
position=str(pos),
|
| 275 |
-
morphology=matching_entries[0],
|
| 276 |
-
features=combined_features,
|
| 277 |
-
root=root,
|
| 278 |
-
location=f"{chapter}:{verse}:{pos}",
|
| 279 |
-
metadata={}
|
| 280 |
-
)
|
| 281 |
-
verse_words.append(word)
|
| 282 |
-
arabic_text += f" {combined_form}"
|
| 283 |
-
verse_data = VerseData(
|
| 284 |
-
chapter=chapter,
|
| 285 |
-
verse=verse,
|
| 286 |
-
arabic_text=arabic_text.strip(),
|
| 287 |
-
translation=translation,
|
| 288 |
-
words=verse_words,
|
| 289 |
-
metadata={
|
| 290 |
-
"processed_timestamp": datetime.now().isoformat(),
|
| 291 |
-
"word_count": len(verse_words)
|
| 292 |
-
}
|
| 293 |
-
)
|
| 294 |
-
self._save_verse_data(verse_data)
|
| 295 |
-
return verse_data
|
| 296 |
-
except Exception as e:
|
| 297 |
-
logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
|
| 298 |
-
logger.error(traceback.format_exc())
|
| 299 |
-
return None
|
| 300 |
-
|
| 301 |
-
def _save_verse_data(self, verse_data: VerseData):
|
| 302 |
-
"""Saves processed verse data as JSON and TXT."""
|
| 303 |
-
try:
|
| 304 |
-
verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
|
| 305 |
-
json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
|
| 306 |
-
with open(json_path, 'w', encoding='utf-8') as f:
|
| 307 |
-
json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
|
| 308 |
-
txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
|
| 309 |
-
with open(txt_path, 'w', encoding='utf-8') as f:
|
| 310 |
-
f.write(f"=== Verse {verse_ref} ===\n\n")
|
| 311 |
-
f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
|
| 312 |
-
f.write(f"Translation:\n{verse_data.translation}\n\n")
|
| 313 |
-
f.write("Word Analysis:\n")
|
| 314 |
-
for i, word in enumerate(verse_data.words, 1):
|
| 315 |
-
f.write(f"\nWord {i}:\n")
|
| 316 |
-
f.write(f" Arabic: {word.arabic}\n")
|
| 317 |
-
f.write(f" Translation: {word.translation}\n")
|
| 318 |
-
f.write(f" Root: {word.root}\n")
|
| 319 |
-
f.write(" Features:\n")
|
| 320 |
-
for feature in word.features:
|
| 321 |
-
f.write(f" - {feature}\n")
|
| 322 |
-
f.write("\n")
|
| 323 |
-
logger.info(f"Saved verse data to {json_path} and {txt_path}")
|
| 324 |
-
except Exception as e:
|
| 325 |
-
logger.error(f"Error saving verse data: {str(e)}")
|
| 326 |
-
logger.error(traceback.format_exc())
|
| 327 |
-
|
| 328 |
-
class QuranicModelTrainer:
|
| 329 |
-
"""Trains the Gemma-2-2b model on Quranic data using chunked incremental updates."""
|
| 330 |
-
def __init__(self,
|
| 331 |
-
model_name: str = "google/gemma-2-2b",
|
| 332 |
-
processed_data_dir: str = "processed_data",
|
| 333 |
-
checkpoint_dir: str = "checkpoints"):
|
| 334 |
-
self.processed_data_dir = processed_data_dir
|
| 335 |
-
self.checkpoint_dir = checkpoint_dir
|
| 336 |
-
# Dynamically assign device based on GPU availability.
|
| 337 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 338 |
-
logger.info(f"Using device: {self.device}")
|
| 339 |
-
logger.info("Loading tokenizer and model...")
|
| 340 |
-
|
| 341 |
-
# Load tokenizer with additional special tokens and HF token from environment
|
| 342 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 343 |
-
model_name,
|
| 344 |
-
token=os.environ.get("HF_TOKEN"),
|
| 345 |
-
additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
|
| 346 |
-
trust_remote_code=True
|
| 347 |
-
)
|
| 348 |
-
if self.tokenizer.pad_token is None:
|
| 349 |
-
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 350 |
-
|
| 351 |
-
# Load model using eager attention for Gemma2 and low_cpu_mem_usage.
|
| 352 |
-
try:
|
| 353 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 354 |
-
model_name,
|
| 355 |
-
token=os.environ.get("HF_TOKEN"),
|
| 356 |
-
torch_dtype=torch.float32,
|
| 357 |
-
low_cpu_mem_usage=True,
|
| 358 |
-
trust_remote_code=True,
|
| 359 |
-
attn_implementation="eager"
|
| 360 |
-
)
|
| 361 |
-
except Exception as e:
|
| 362 |
-
logger.error(f"Error loading model directly: {str(e)}")
|
| 363 |
-
logger.info("Attempting to load with fallback parameters...")
|
| 364 |
-
from transformers import AutoConfig
|
| 365 |
-
config = AutoConfig.from_pretrained(
|
| 366 |
-
model_name,
|
| 367 |
-
token=os.environ.get("HF_TOKEN"),
|
| 368 |
-
trust_remote_code=True
|
| 369 |
-
)
|
| 370 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 371 |
-
model_name,
|
| 372 |
-
token=os.environ.get("HF_TOKEN"),
|
| 373 |
-
config=config,
|
| 374 |
-
torch_dtype=torch.float32,
|
| 375 |
-
low_cpu_mem_usage=True,
|
| 376 |
-
trust_remote_code=True,
|
| 377 |
-
revision="main",
|
| 378 |
-
attn_implementation="eager"
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
# Resize token embeddings to match tokenizer vocabulary size
|
| 382 |
-
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 383 |
-
self.model.train()
|
| 384 |
-
self.model.config.use_cache = False
|
| 385 |
-
|
| 386 |
-
if hasattr(self.model, "gradient_checkpointing_enable"):
|
| 387 |
-
self.model.gradient_checkpointing_enable()
|
| 388 |
-
else:
|
| 389 |
-
logger.warning("Gradient checkpointing not available for this model")
|
| 390 |
-
|
| 391 |
-
def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
|
| 392 |
-
"""Creates a QuranicDataset from processed chapter data."""
|
| 393 |
-
return QuranicDataset(chapter_data, self.tokenizer)
|
| 394 |
-
|
| 395 |
-
def train_chunk(self, training_args: TrainingArguments, dataset: Dataset, chunk_output_dir: str) -> bool:
|
| 396 |
-
"""
|
| 397 |
-
Trains a single chunk. Returns True if successful.
|
| 398 |
-
"""
|
| 399 |
-
try:
|
| 400 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 401 |
-
tokenizer=self.tokenizer,
|
| 402 |
-
mlm=False
|
| 403 |
-
)
|
| 404 |
-
trainer = Trainer(
|
| 405 |
-
model=self.model,
|
| 406 |
-
args=training_args,
|
| 407 |
-
train_dataset=dataset,
|
| 408 |
-
processing_class=self.tokenizer, # Updated per deprecation notice.
|
| 409 |
-
data_collator=data_collator
|
| 410 |
-
)
|
| 411 |
-
logger.info(f"Starting training on chunk at {chunk_output_dir} with device {self.device}")
|
| 412 |
-
trainer.train()
|
| 413 |
-
trainer.save_model(chunk_output_dir)
|
| 414 |
-
zip_filename = zip_checkpoint(chunk_output_dir)
|
| 415 |
-
base_url = os.environ.get("HF_SPACE_URL", "http://localhost")
|
| 416 |
-
download_link = f"{base_url}/file/{zip_filename}"
|
| 417 |
-
logger.info(f"Checkpoint download link: {download_link}")
|
| 418 |
-
with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f:
|
| 419 |
-
f.write(download_link)
|
| 420 |
-
del trainer
|
| 421 |
-
gc.collect()
|
| 422 |
-
manage_memory()
|
| 423 |
-
manage_gpu_resources()
|
| 424 |
-
return True
|
| 425 |
-
except Exception as e:
|
| 426 |
-
logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}")
|
| 427 |
-
logger.error(traceback.format_exc())
|
| 428 |
-
return False
|
| 429 |
-
|
| 430 |
-
def poll_for_gpu(self, poll_interval: int = 10, max_attempts: int = 30) -> bool:
|
| 431 |
-
"""
|
| 432 |
-
Polls periodically to check if GPU is available.
|
| 433 |
-
Returns True if GPU becomes available within the attempts, otherwise False.
|
| 434 |
-
"""
|
| 435 |
-
attempts = 0
|
| 436 |
-
while attempts < max_attempts:
|
| 437 |
-
if torch.cuda.is_available():
|
| 438 |
-
# Optionally, check that sufficient GPU memory is available.
|
| 439 |
-
manage_gpu_resources(1)
|
| 440 |
-
logger.info("GPU is now available for training.")
|
| 441 |
-
return True
|
| 442 |
-
time.sleep(poll_interval)
|
| 443 |
-
attempts += 1
|
| 444 |
-
logger.info(f"Polling for GPU availability... attempt {attempts}/{max_attempts}")
|
| 445 |
-
return False
|
| 446 |
-
|
| 447 |
-
def train_chapter(self,
|
| 448 |
-
chapter_num: int,
|
| 449 |
-
processed_verses: List[Dict],
|
| 450 |
-
chunk_size: int = 5, # Reduced chunk size to help with memory
|
| 451 |
-
num_train_epochs: int = 5, # Lower epochs for testing
|
| 452 |
-
per_device_train_batch_size: int = 1,
|
| 453 |
-
learning_rate: float = 3e-5,
|
| 454 |
-
weight_decay: float = 0.01,
|
| 455 |
-
gradient_accumulation_steps: int = 32) -> bool:
|
| 456 |
-
"""
|
| 457 |
-
Splits chapter data into chunks and trains incrementally.
|
| 458 |
-
If GPU training fails due to NVML errors, it shifts to CPU and,
|
| 459 |
-
after a successful CPU run, polls for GPU availability to switch back.
|
| 460 |
-
"""
|
| 461 |
-
total_examples = len(processed_verses)
|
| 462 |
-
total_chunks = math.ceil(total_examples / chunk_size)
|
| 463 |
-
logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
|
| 464 |
-
for chunk_index in range(total_chunks):
|
| 465 |
-
chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
|
| 466 |
-
dataset = self.prepare_training_data(chunk_data)
|
| 467 |
-
chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
|
| 468 |
-
os.makedirs(chunk_output_dir, exist_ok=True)
|
| 469 |
-
|
| 470 |
-
# Attempt training on the current device (GPU if available)
|
| 471 |
-
training_args = TrainingArguments(
|
| 472 |
-
output_dir=chunk_output_dir,
|
| 473 |
-
overwrite_output_dir=True,
|
| 474 |
-
num_train_epochs=num_train_epochs,
|
| 475 |
-
per_device_train_batch_size=per_device_train_batch_size,
|
| 476 |
-
learning_rate=learning_rate,
|
| 477 |
-
weight_decay=weight_decay,
|
| 478 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 479 |
-
fp16=False,
|
| 480 |
-
remove_unused_columns=False,
|
| 481 |
-
logging_steps=50,
|
| 482 |
-
report_to="none",
|
| 483 |
-
eval_strategy="no",
|
| 484 |
-
use_cpu=not (self.device == "cuda"),
|
| 485 |
-
dataloader_num_workers=0,
|
| 486 |
-
dataloader_pin_memory=False
|
| 487 |
-
)
|
| 488 |
-
logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num} on device {self.device}...")
|
| 489 |
-
success = self.train_chunk(training_args, dataset, chunk_output_dir)
|
| 490 |
-
|
| 491 |
-
# If training fails on GPU, switch to CPU and then poll to switch back when GPU is available.
|
| 492 |
-
if not success and self.device == "cuda":
|
| 493 |
-
logger.info(f"GPU error detected on chunk {chunk_index+1}. Shifting to CPU for this chunk...")
|
| 494 |
-
# Move model to CPU explicitly
|
| 495 |
-
self.model.to("cpu")
|
| 496 |
-
self.device = "cpu"
|
| 497 |
-
training_args.use_cpu = True
|
| 498 |
-
success = self.train_chunk(training_args, dataset, chunk_output_dir)
|
| 499 |
-
if not success:
|
| 500 |
-
logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1} even on CPU. Stopping chapter training.")
|
| 501 |
-
return False
|
| 502 |
-
# After CPU training, poll for GPU availability before switching back.
|
| 503 |
-
if self.poll_for_gpu():
|
| 504 |
-
# Move model back to GPU
|
| 505 |
-
self.model.to("cuda")
|
| 506 |
-
self.device = "cuda"
|
| 507 |
-
else:
|
| 508 |
-
logger.warning("GPU did not become available during polling. Continuing on CPU.")
|
| 509 |
-
|
| 510 |
-
if not success:
|
| 511 |
-
logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1}. Stopping chapter training.")
|
| 512 |
-
return False
|
| 513 |
-
logger.info(f"Completed training for Chapter {chapter_num}")
|
| 514 |
-
return True
|
| 515 |
-
|
| 516 |
-
class QuranicPipeline:
|
| 517 |
-
"""Integrates data processing and incremental model training for all chapters."""
|
| 518 |
-
def __init__(self,
|
| 519 |
-
source_dir: str = ".",
|
| 520 |
-
working_dir: str = "working_directory",
|
| 521 |
-
start_chapter: int = 1,
|
| 522 |
-
end_chapter: int = 114):
|
| 523 |
-
self.source_dir = source_dir
|
| 524 |
-
self.working_dir = working_dir
|
| 525 |
-
self.start_chapter = start_chapter
|
| 526 |
-
self.end_chapter = end_chapter
|
| 527 |
-
self.setup_directories()
|
| 528 |
-
global logger
|
| 529 |
-
logger = logging.getLogger(__name__)
|
| 530 |
-
self.state = {
|
| 531 |
-
"last_processed_chapter": 0,
|
| 532 |
-
"last_trained_chapter": 0,
|
| 533 |
-
"current_state": "initialized",
|
| 534 |
-
"errors": [],
|
| 535 |
-
"start_time": datetime.now().isoformat()
|
| 536 |
-
}
|
| 537 |
-
self.load_state()
|
| 538 |
-
try:
|
| 539 |
-
logger.info("Initializing Quranic Data Processor...")
|
| 540 |
-
self.processor = QuranicDataProcessor(
|
| 541 |
-
source_dir=self.source_dir,
|
| 542 |
-
output_dir=os.path.join(self.working_dir, "processed_data")
|
| 543 |
-
)
|
| 544 |
-
logger.info("Initializing Quranic Model Trainer...")
|
| 545 |
-
self.trainer = QuranicModelTrainer(
|
| 546 |
-
model_name="google/gemma-2-2b",
|
| 547 |
-
processed_data_dir=os.path.join(self.working_dir, "processed_data"),
|
| 548 |
-
checkpoint_dir=os.path.join(self.working_dir, "checkpoints")
|
| 549 |
-
)
|
| 550 |
-
self.state["current_state"] = "ready"
|
| 551 |
-
self.save_state()
|
| 552 |
-
except Exception as e:
|
| 553 |
-
self.handle_error("Initialization failed", e)
|
| 554 |
-
raise
|
| 555 |
-
|
| 556 |
-
def setup_directories(self):
|
| 557 |
-
dirs = [
|
| 558 |
-
self.working_dir,
|
| 559 |
-
os.path.join(self.working_dir, "processed_data"),
|
| 560 |
-
os.path.join(self.working_dir, "checkpoints"),
|
| 561 |
-
os.path.join(self.working_dir, "logs"),
|
| 562 |
-
os.path.join(self.working_dir, "state")
|
| 563 |
-
]
|
| 564 |
-
for d in dirs:
|
| 565 |
-
os.makedirs(d, exist_ok=True)
|
| 566 |
-
|
| 567 |
-
def load_state(self):
|
| 568 |
-
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
|
| 569 |
-
if os.path.exists(state_file):
|
| 570 |
-
try:
|
| 571 |
-
with open(state_file, 'r') as f:
|
| 572 |
-
saved_state = json.load(f)
|
| 573 |
-
self.state.update(saved_state)
|
| 574 |
-
logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, "
|
| 575 |
-
f"last trained chapter {self.state.get('last_trained_chapter')}")
|
| 576 |
-
except Exception as e:
|
| 577 |
-
logger.warning(f"Could not load previous state: {str(e)}")
|
| 578 |
-
|
| 579 |
-
def save_state(self):
|
| 580 |
-
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
|
| 581 |
-
with open(state_file, 'w') as f:
|
| 582 |
-
json.dump(self.state, f, indent=2)
|
| 583 |
-
|
| 584 |
-
def handle_error(self, context: str, error: Exception):
|
| 585 |
-
error_detail = {
|
| 586 |
-
"timestamp": datetime.now().isoformat(),
|
| 587 |
-
"context": context,
|
| 588 |
-
"error": str(error),
|
| 589 |
-
"traceback": traceback.format_exc()
|
| 590 |
-
}
|
| 591 |
-
self.state.setdefault("errors", []).append(error_detail)
|
| 592 |
-
logger.error(f"{context}: {str(error)}")
|
| 593 |
-
self.save_state()
|
| 594 |
-
|
| 595 |
-
def run_pipeline(self):
|
| 596 |
-
"""Runs processing and training for chapters sequentially, then saves the final model."""
|
| 597 |
-
logger.info("Starting pipeline execution")
|
| 598 |
-
try:
|
| 599 |
-
if not self.processor.load_source_files():
|
| 600 |
-
raise Exception("Failed to load source files")
|
| 601 |
-
for chapter in range(self.start_chapter, self.end_chapter + 1):
|
| 602 |
-
logger.info(f"=== Processing Chapter {chapter} ===")
|
| 603 |
-
processed_chapter_data = []
|
| 604 |
-
verse = 1
|
| 605 |
-
while True:
|
| 606 |
-
verse_data = self.processor.process_verse(chapter, verse)
|
| 607 |
-
if verse_data is None:
|
| 608 |
-
break
|
| 609 |
-
processed_chapter_data.append(asdict(verse_data))
|
| 610 |
-
verse += 1
|
| 611 |
-
if processed_chapter_data:
|
| 612 |
-
success = self.trainer.train_chapter(chapter, processed_chapter_data)
|
| 613 |
-
if not success:
|
| 614 |
-
logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
|
| 615 |
-
break
|
| 616 |
-
self.state["last_trained_chapter"] = chapter
|
| 617 |
-
self.save_state()
|
| 618 |
-
else:
|
| 619 |
-
logger.warning(f"No processed data for Chapter {chapter}")
|
| 620 |
-
self.state["last_processed_chapter"] = chapter
|
| 621 |
-
self.save_state()
|
| 622 |
-
manage_memory()
|
| 623 |
-
manage_gpu_resources()
|
| 624 |
-
logger.info("Pipeline execution completed")
|
| 625 |
-
# Save the final model and tokenizer after all training is complete.
|
| 626 |
-
final_model_dir = os.path.join(self.working_dir, "final_model")
|
| 627 |
-
os.makedirs(final_model_dir, exist_ok=True)
|
| 628 |
-
self.trainer.model.save_pretrained(final_model_dir)
|
| 629 |
-
self.trainer.tokenizer.save_pretrained(final_model_dir)
|
| 630 |
-
logger.info(f"Final model saved to {final_model_dir}")
|
| 631 |
-
except Exception as e:
|
| 632 |
-
self.handle_error("Pipeline execution failed", e)
|
| 633 |
-
raise
|
| 634 |
-
|
| 635 |
-
@spaces.GPU() # Request ZeroGPU hardware for the Space
|
| 636 |
-
def start_pipeline():
|
| 637 |
-
try:
|
| 638 |
-
logger.info("Starting Quranic Training Pipeline with Gemma-2-2b")
|
| 639 |
-
logger.info(f"PyTorch version: {torch.__version__}")
|
| 640 |
-
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 641 |
-
if torch.cuda.is_available():
|
| 642 |
-
logger.info(f"CUDA device count: {torch.cuda.device_count()}")
|
| 643 |
-
logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}")
|
| 644 |
-
|
| 645 |
-
if not os.environ.get("HF_TOKEN"):
|
| 646 |
-
logger.warning("HF_TOKEN environment variable not set. Model loading may fail.")
|
| 647 |
-
|
| 648 |
-
required_files = [
|
| 649 |
-
'quranic-corpus-morphology-0.4.txt',
|
| 650 |
-
'en.sample.quran-maududi.txt',
|
| 651 |
-
'en.w4w.qurandev.txt'
|
| 652 |
-
]
|
| 653 |
-
missing_files = [f for f in required_files if not os.path.exists(f)]
|
| 654 |
-
if missing_files:
|
| 655 |
-
return f"Missing required data files: {', '.join(missing_files)}"
|
| 656 |
-
|
| 657 |
-
pipeline = QuranicPipeline(
|
| 658 |
-
source_dir=".",
|
| 659 |
-
working_dir="working_directory",
|
| 660 |
-
start_chapter=1,
|
| 661 |
-
end_chapter=114
|
| 662 |
-
)
|
| 663 |
-
pipeline.run_pipeline()
|
| 664 |
-
return "Pipeline execution completed successfully."
|
| 665 |
-
except Exception as e:
|
| 666 |
-
error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}"
|
| 667 |
-
logger.error(error_msg)
|
| 668 |
-
return error_msg
|
| 669 |
-
|
| 670 |
-
iface = gr.Interface(
|
| 671 |
-
fn=start_pipeline,
|
| 672 |
-
inputs=[],
|
| 673 |
-
outputs=gr.Textbox(label="Pipeline Status", lines=10),
|
| 674 |
-
title="Quranic Training Pipeline for Gemma-2-2b",
|
| 675 |
-
description="""This pipeline fine-tunes Google's Gemma-2-2b model on Quranic data.
|
| 676 |
-
|
| 677 |
-
Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU.
|
| 678 |
-
|
| 679 |
-
Requirements:
|
| 680 |
-
- Transformers (>=4.42.0)
|
| 681 |
-
- Gradio (>=5.12.0)
|
| 682 |
-
- PyTorch (==2.2.2)
|
| 683 |
-
- psutil (==5.9.5)
|
| 684 |
-
- Accelerate (>=0.26.0)
|
| 685 |
-
|
| 686 |
-
The pipeline processes all 114 chapters of the Quran sequentially, with memory and GPU resource management optimizations for dynamic ZeroGPU environments.
|
| 687 |
-
Checkpoint download links are provided after every training chunk."""
|
| 688 |
-
)
|
| 689 |
-
|
| 690 |
-
if __name__ == "__main__":
|
| 691 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|