Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms.functional as tvf | |
| import torchvision.transforms as tvtfms | |
| import operator as op | |
| from PIL import Image | |
| from torch import nn | |
| from timm import create_model | |
| import collections | |
| import typing | |
| def get_model(): | |
| net = create_model( | |
| "vit_base_patch16_224", pretrained=False, num_classes=0, in_chans=3 | |
| ) | |
| head = nn.Sequential( | |
| nn.BatchNorm1d(768), # 192 | |
| nn.Dropout(0.25), | |
| nn.Linear(768, 512, bias=False), # 192 | |
| nn.ReLU(inplace=True), | |
| nn.BatchNorm1d(512), | |
| nn.Dropout(0.5), | |
| nn.Linear(512, 7, bias=False), | |
| ) | |
| model = nn.Sequential(net, head) | |
| return model | |
| def copy_weight(name, parameter, state_dict): | |
| """ | |
| Takes in a layer `name`, model `parameter`, and `state_dict` | |
| and loads the weights from `state_dict` into `parameter` | |
| if it exists. | |
| """ | |
| # Part of the body | |
| if name[0] == "0": | |
| name = name[:2] + "model." + name[2:] | |
| if name in state_dict.keys(): | |
| input_parameter = state_dict[name] | |
| if input_parameter.shape == parameter.shape: | |
| parameter.copy_(input_parameter) | |
| else: | |
| print(f"Shape mismatch at layer: {name}, skipping") | |
| else: | |
| print(f"{name} is not in the state_dict, skipping.") | |
| def apply_weights( | |
| input_model: nn.Module, | |
| input_weights: collections.OrderedDict, | |
| application_function: callable, | |
| ): | |
| """ | |
| Takes an input state_dict and applies those weights to the `input_model`, potentially | |
| with a modifier function. | |
| Args: | |
| input_model (`nn.Module`): | |
| The model that weights should be applied to | |
| input_weights (`collections.OrderedDict`): | |
| A dictionary of weights, the trained model's `state_dict()` | |
| application_function (`callable`): | |
| A function that takes in one parameter and layer name from `input_model` | |
| and the `input_weights`. Should apply the weights from the state dict into `input_model`. | |
| """ | |
| model_dict = input_model.state_dict() | |
| for name, parameter in model_dict.items(): | |
| application_function(name, parameter, input_weights) | |
| input_model.load_state_dict(model_dict) | |