Spaces:
Sleeping
Sleeping
revert changes
Browse files
app.py
CHANGED
@@ -372,233 +372,61 @@ def load_all_data(image_root, pkl_root):
|
|
372 |
return data_dict, sae_data_dict
|
373 |
|
374 |
|
375 |
-
# data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
376 |
-
# default_image_name = "christmas-imagenet"
|
377 |
-
|
378 |
-
|
379 |
-
# with gr.Blocks(
|
380 |
-
# theme=gr.themes.Citrus(),
|
381 |
-
# css="""
|
382 |
-
# .image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
383 |
-
# .image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
384 |
-
# """,
|
385 |
-
# ) as demo:
|
386 |
-
# with gr.Row():
|
387 |
-
# with gr.Column():
|
388 |
-
# # Left View: Image selection and click handling
|
389 |
-
# gr.Markdown("## Select input image and patch on the image")
|
390 |
-
# image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
|
391 |
-
# image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
|
392 |
-
|
393 |
-
# # Update image display when a new image is selected
|
394 |
-
# image_selector.change(
|
395 |
-
# fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
|
396 |
-
# )
|
397 |
-
# image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
|
398 |
-
|
399 |
-
# with gr.Column():
|
400 |
-
# gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
401 |
-
# model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
402 |
-
# model_selector = gr.Dropdown(
|
403 |
-
# choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
|
404 |
-
# )
|
405 |
-
# init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
|
406 |
-
# neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
|
407 |
-
|
408 |
-
# image_selector.change(
|
409 |
-
# fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
410 |
-
# )
|
411 |
-
# image_display.select(
|
412 |
-
# fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
413 |
-
# )
|
414 |
-
# model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
|
415 |
-
# model_selector.change(
|
416 |
-
# fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
417 |
-
# )
|
418 |
-
|
419 |
-
# with gr.Row():
|
420 |
-
# with gr.Column():
|
421 |
-
# radio_names = get_init_radio_options(default_image_name, model_options[0])
|
422 |
-
|
423 |
-
# feautre_idx = radio_names[0].split("-")[-1]
|
424 |
-
# markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
|
425 |
-
# init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
|
426 |
-
|
427 |
-
# gr.Markdown("### Localize SAE latent activation using CLIP")
|
428 |
-
# seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
429 |
-
# init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
|
430 |
-
# gr.Markdown("### Localize SAE latent activation using MaPLE")
|
431 |
-
# seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
|
432 |
-
|
433 |
-
# with gr.Column():
|
434 |
-
# gr.Markdown("## Top activating SAE latent index")
|
435 |
-
|
436 |
-
# radio_choices = gr.Radio(
|
437 |
-
# choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
|
438 |
-
# )
|
439 |
-
# toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
440 |
-
|
441 |
-
# markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
|
442 |
-
|
443 |
-
# gr.Markdown("### ImageNet")
|
444 |
-
# top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
|
445 |
-
# act_value_1 = gr.Markdown(init_values[0])
|
446 |
-
|
447 |
-
# gr.Markdown("### ImageNet-Sketch")
|
448 |
-
# top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False)
|
449 |
-
# act_value_2 = gr.Markdown(init_values[1])
|
450 |
-
|
451 |
-
# gr.Markdown("### Caltech101")
|
452 |
-
# top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
|
453 |
-
# act_value_3 = gr.Markdown(init_values[2])
|
454 |
-
|
455 |
-
# image_display.select(
|
456 |
-
# fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
457 |
-
# )
|
458 |
-
|
459 |
-
# model_selector.change(
|
460 |
-
# fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
461 |
-
# )
|
462 |
-
|
463 |
-
# image_selector.select(
|
464 |
-
# fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
465 |
-
# )
|
466 |
-
|
467 |
-
# radio_choices.change(
|
468 |
-
# fn=update_markdown,
|
469 |
-
# inputs=[radio_choices],
|
470 |
-
# outputs=[markdown_display, markdown_display_2],
|
471 |
-
# queue=True,
|
472 |
-
# )
|
473 |
-
|
474 |
-
# radio_choices.change(
|
475 |
-
# fn=show_activation_heatmap_clip,
|
476 |
-
# inputs=[image_selector, radio_choices, toggle_btn],
|
477 |
-
# outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
|
478 |
-
# queue=True,
|
479 |
-
# )
|
480 |
-
|
481 |
-
# radio_choices.change(
|
482 |
-
# fn=show_activation_heatmap_maple,
|
483 |
-
# inputs=[image_selector, radio_choices, model_selector],
|
484 |
-
# outputs=[seg_mask_display_maple],
|
485 |
-
# queue=True,
|
486 |
-
# )
|
487 |
-
|
488 |
-
# # toggle_btn.change(
|
489 |
-
# # fn=get_top_images,
|
490 |
-
# # inputs=[radio_choices, toggle_btn],
|
491 |
-
# # outputs=[top_image_1, top_image_2, top_image_3],
|
492 |
-
# # queue=True,
|
493 |
-
# # )
|
494 |
-
|
495 |
-
# toggle_btn.change(
|
496 |
-
# fn=show_activation_heatmap_clip,
|
497 |
-
# inputs=[image_selector, radio_choices, toggle_btn],
|
498 |
-
# outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
|
499 |
-
# queue=True,
|
500 |
-
# )
|
501 |
-
|
502 |
-
# # Launch the app
|
503 |
-
# demo.launch()
|
504 |
-
|
505 |
-
# Precompute all necessary data and store in caches before launching the Gradio app.
|
506 |
-
|
507 |
-
# Load data once at startup
|
508 |
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
509 |
default_image_name = "christmas-imagenet"
|
510 |
-
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
511 |
-
default_model = model_options[0]
|
512 |
|
513 |
-
# Precompute activation distributions for all images/models to avoid repeated I/O.
|
514 |
-
activation_cache = {}
|
515 |
-
for img_name in data_dict.keys():
|
516 |
-
for mdl in ["CLIP"] + model_options:
|
517 |
-
activation_cache[(img_name, mdl)] = get_activation_distribution(img_name, mdl)
|
518 |
-
|
519 |
-
# Precompute initial radio options and top-neuron related info for default states.
|
520 |
-
radio_names = get_init_radio_options(default_image_name, default_model)
|
521 |
-
feautre_idx = radio_names[0].split("-")[-1]
|
522 |
-
|
523 |
-
# Precompute initial figures and mask overlays so they don't need to be recomputed on load.
|
524 |
-
init_plot = plot_activation_distribution(None, default_image_name, default_model)
|
525 |
-
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
|
526 |
-
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], default_model)
|
527 |
|
528 |
with gr.Blocks(
|
529 |
theme=gr.themes.Citrus(),
|
530 |
css="""
|
531 |
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
532 |
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
533 |
-
"""
|
534 |
) as demo:
|
535 |
with gr.Row():
|
536 |
with gr.Column():
|
|
|
537 |
gr.Markdown("## Select input image and patch on the image")
|
538 |
-
|
539 |
-
# Instead of recomputing, just directly load from data_dict
|
540 |
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
|
541 |
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
|
542 |
|
543 |
-
#
|
544 |
-
def update_image_display(img_name):
|
545 |
-
return data_dict[img_name]["image"]
|
546 |
-
|
547 |
image_selector.change(
|
548 |
-
fn=
|
549 |
-
inputs=image_selector,
|
550 |
-
outputs=image_display
|
551 |
)
|
552 |
-
|
553 |
-
# Highlight selected grid cell
|
554 |
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
|
555 |
|
556 |
with gr.Column():
|
557 |
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
558 |
-
|
559 |
model_selector = gr.Dropdown(
|
560 |
-
choices=model_options,
|
561 |
-
value=default_model,
|
562 |
-
label="Select adapted model (MaPLe)"
|
563 |
)
|
564 |
-
|
565 |
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
|
566 |
|
567 |
-
# Update plot based on image/model
|
568 |
-
def update_plot(img_name, model_name):
|
569 |
-
# Use precomputed activation distributions from activation_cache
|
570 |
-
# to create the figure. If figure creation is expensive, consider caching plots as well.
|
571 |
-
return plot_activation_distribution(None, img_name, model_name)
|
572 |
-
|
573 |
image_selector.change(
|
574 |
-
fn=
|
575 |
-
inputs=[image_selector, model_selector],
|
576 |
-
outputs=neuron_plot
|
577 |
)
|
578 |
image_display.select(
|
579 |
-
fn=
|
580 |
-
inputs=[image_selector, model_selector],
|
581 |
-
outputs=neuron_plot
|
582 |
-
)
|
583 |
-
model_selector.change(
|
584 |
-
fn=lambda img_name: data_dict[img_name]["image"],
|
585 |
-
inputs=[image_selector],
|
586 |
-
outputs=image_display
|
587 |
)
|
|
|
588 |
model_selector.change(
|
589 |
-
fn=
|
590 |
-
inputs=[image_selector, model_selector],
|
591 |
-
outputs=neuron_plot
|
592 |
)
|
593 |
|
594 |
with gr.Row():
|
595 |
with gr.Column():
|
596 |
-
|
|
|
|
|
597 |
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
|
|
|
598 |
|
599 |
gr.Markdown("### Localize SAE latent activation using CLIP")
|
600 |
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
601 |
-
|
602 |
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
603 |
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
|
604 |
|
@@ -606,17 +434,12 @@ with gr.Blocks(
|
|
606 |
gr.Markdown("## Top activating SAE latent index")
|
607 |
|
608 |
radio_choices = gr.Radio(
|
609 |
-
choices=radio_names,
|
610 |
-
label="Top activating SAE latent",
|
611 |
-
interactive=True,
|
612 |
-
value=radio_names[0]
|
613 |
)
|
614 |
-
|
615 |
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
616 |
|
617 |
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
|
618 |
|
619 |
-
# Display precomputed top images and values
|
620 |
gr.Markdown("### ImageNet")
|
621 |
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
|
622 |
act_value_1 = gr.Markdown(init_values[0])
|
@@ -629,31 +452,18 @@ with gr.Blocks(
|
|
629 |
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
|
630 |
act_value_3 = gr.Markdown(init_values[2])
|
631 |
|
632 |
-
# Update radio choices when image/model changes.
|
633 |
-
# If expensive, this could be cached as well.
|
634 |
-
def on_image_or_model_change(img_name, model_name):
|
635 |
-
return update_radio_options(None, img_name, model_name)
|
636 |
-
|
637 |
image_display.select(
|
638 |
-
fn=
|
639 |
-
inputs=[image_selector, model_selector],
|
640 |
-
outputs=[radio_choices],
|
641 |
-
queue=True
|
642 |
)
|
|
|
643 |
model_selector.change(
|
644 |
-
fn=
|
645 |
-
inputs=[image_selector, model_selector],
|
646 |
-
outputs=[radio_choices],
|
647 |
-
queue=True
|
648 |
)
|
|
|
649 |
image_selector.select(
|
650 |
-
fn=
|
651 |
-
inputs=[image_selector, model_selector],
|
652 |
-
outputs=[radio_choices],
|
653 |
-
queue=True
|
654 |
)
|
655 |
|
656 |
-
# Update markdown titles dynamically based on selected radio choice
|
657 |
radio_choices.change(
|
658 |
fn=update_markdown,
|
659 |
inputs=[radio_choices],
|
@@ -661,7 +471,6 @@ with gr.Blocks(
|
|
661 |
queue=True,
|
662 |
)
|
663 |
|
664 |
-
# Show activation heatmap for CLIP
|
665 |
radio_choices.change(
|
666 |
fn=show_activation_heatmap_clip,
|
667 |
inputs=[image_selector, radio_choices, toggle_btn],
|
@@ -669,7 +478,6 @@ with gr.Blocks(
|
|
669 |
queue=True,
|
670 |
)
|
671 |
|
672 |
-
# Show activation heatmap for MaPLE
|
673 |
radio_choices.change(
|
674 |
fn=show_activation_heatmap_maple,
|
675 |
inputs=[image_selector, radio_choices, model_selector],
|
@@ -677,7 +485,13 @@ with gr.Blocks(
|
|
677 |
queue=True,
|
678 |
)
|
679 |
|
680 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
toggle_btn.change(
|
682 |
fn=show_activation_heatmap_clip,
|
683 |
inputs=[image_selector, radio_choices, toggle_btn],
|
@@ -687,4 +501,3 @@ with gr.Blocks(
|
|
687 |
|
688 |
# Launch the app
|
689 |
demo.launch()
|
690 |
-
|
|
|
372 |
return data_dict, sae_data_dict
|
373 |
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
|
376 |
default_image_name = "christmas-imagenet"
|
|
|
|
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
with gr.Blocks(
|
380 |
theme=gr.themes.Citrus(),
|
381 |
css="""
|
382 |
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
|
383 |
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
|
384 |
+
""",
|
385 |
) as demo:
|
386 |
with gr.Row():
|
387 |
with gr.Column():
|
388 |
+
# Left View: Image selection and click handling
|
389 |
gr.Markdown("## Select input image and patch on the image")
|
|
|
|
|
390 |
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
|
391 |
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
|
392 |
|
393 |
+
# Update image display when a new image is selected
|
|
|
|
|
|
|
394 |
image_selector.change(
|
395 |
+
fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
|
|
|
|
|
396 |
)
|
|
|
|
|
397 |
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
|
398 |
|
399 |
with gr.Column():
|
400 |
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
|
401 |
+
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
|
402 |
model_selector = gr.Dropdown(
|
403 |
+
choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
|
|
|
|
|
404 |
)
|
405 |
+
init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
|
406 |
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
|
407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
image_selector.change(
|
409 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
|
|
|
|
410 |
)
|
411 |
image_display.select(
|
412 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
)
|
414 |
+
model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
|
415 |
model_selector.change(
|
416 |
+
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
|
|
|
|
|
417 |
)
|
418 |
|
419 |
with gr.Row():
|
420 |
with gr.Column():
|
421 |
+
radio_names = get_init_radio_options(default_image_name, model_options[0])
|
422 |
+
|
423 |
+
feautre_idx = radio_names[0].split("-")[-1]
|
424 |
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
|
425 |
+
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
|
426 |
|
427 |
gr.Markdown("### Localize SAE latent activation using CLIP")
|
428 |
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
|
429 |
+
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
|
430 |
gr.Markdown("### Localize SAE latent activation using MaPLE")
|
431 |
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
|
432 |
|
|
|
434 |
gr.Markdown("## Top activating SAE latent index")
|
435 |
|
436 |
radio_choices = gr.Radio(
|
437 |
+
choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
|
|
|
|
|
|
|
438 |
)
|
|
|
439 |
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
|
440 |
|
441 |
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
|
442 |
|
|
|
443 |
gr.Markdown("### ImageNet")
|
444 |
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
|
445 |
act_value_1 = gr.Markdown(init_values[0])
|
|
|
452 |
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
|
453 |
act_value_3 = gr.Markdown(init_values[2])
|
454 |
|
|
|
|
|
|
|
|
|
|
|
455 |
image_display.select(
|
456 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
|
|
|
|
|
|
457 |
)
|
458 |
+
|
459 |
model_selector.change(
|
460 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
|
|
|
|
|
|
461 |
)
|
462 |
+
|
463 |
image_selector.select(
|
464 |
+
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
|
|
|
|
|
|
|
465 |
)
|
466 |
|
|
|
467 |
radio_choices.change(
|
468 |
fn=update_markdown,
|
469 |
inputs=[radio_choices],
|
|
|
471 |
queue=True,
|
472 |
)
|
473 |
|
|
|
474 |
radio_choices.change(
|
475 |
fn=show_activation_heatmap_clip,
|
476 |
inputs=[image_selector, radio_choices, toggle_btn],
|
|
|
478 |
queue=True,
|
479 |
)
|
480 |
|
|
|
481 |
radio_choices.change(
|
482 |
fn=show_activation_heatmap_maple,
|
483 |
inputs=[image_selector, radio_choices, model_selector],
|
|
|
485 |
queue=True,
|
486 |
)
|
487 |
|
488 |
+
# toggle_btn.change(
|
489 |
+
# fn=get_top_images,
|
490 |
+
# inputs=[radio_choices, toggle_btn],
|
491 |
+
# outputs=[top_image_1, top_image_2, top_image_3],
|
492 |
+
# queue=True,
|
493 |
+
# )
|
494 |
+
|
495 |
toggle_btn.change(
|
496 |
fn=show_activation_heatmap_clip,
|
497 |
inputs=[image_selector, radio_choices, toggle_btn],
|
|
|
501 |
|
502 |
# Launch the app
|
503 |
demo.launch()
|
|