patchsae-demo / app.py
hyesulim's picture
test: fixed typo
4cd925e verified
raw
history blame
30.4 kB
import gzip
import os
import pickle
from glob import glob
from time import sleep
from functools import lru_cache
import concurrent.futures
from typing import Dict, Tuple, List
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}
# Global cache for data
_CACHE = {
'data_dict': {},
'sae_data_dict': {},
'model_data': {},
'segmasks': {},
'top_images': {}
}
def load_all_data(image_root: str, pkl_root: str) -> Tuple[Dict, Dict]:
"""Load all data with optimized parallel processing."""
# Load images in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
image_files = glob(f"{image_root}/*")
future_to_file = {
executor.submit(_load_image_file, image_file): image_file
for image_file in image_files
}
for future in concurrent.futures.as_completed(future_to_file):
image_file = future_to_file[future]
image_name = os.path.basename(image_file).split(".")[0]
result = future.result()
if result is not None:
_CACHE['data_dict'][image_name] = result
# Load SAE data
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
_CACHE['sae_data_dict']["mean_acts"] = pickle.load(f)
# Load mean act values in parallel
datasets = ["imagenet", "imagenet-sketch", "caltech101"]
_CACHE['sae_data_dict']["mean_act_values"] = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_dataset = {
executor.submit(_load_mean_act_values, dataset): dataset
for dataset in datasets
}
for future in concurrent.futures.as_completed(future_to_dataset):
dataset = future_to_dataset[future]
result = future.result()
if result is not None:
_CACHE['sae_data_dict']["mean_act_values"][dataset] = result
return _CACHE['data_dict'], _CACHE['sae_data_dict']
def _load_image_file(image_file: str) -> Dict:
"""Helper function to load a single image file."""
try:
image = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
return {
"image": image,
"image_path": image_file,
}
except Exception as e:
print(f"Error loading {image_file}: {e}")
return None
def _load_mean_act_values(dataset: str) -> np.ndarray:
"""Helper function to load mean act values for a dataset."""
try:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
return pickle.load(f)
except Exception as e:
print(f"Error loading mean act values for {dataset}: {e}")
return None
@lru_cache(maxsize=1024)
def get_data(image_name: str, model_name: str) -> np.ndarray:
"""Cached function to get model data."""
cache_key = f"{model_name}_{image_name}"
if cache_key not in _CACHE['model_data']:
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
_CACHE['model_data'][cache_key] = pickle.load(f)
return _CACHE['model_data'][cache_key]
@lru_cache(maxsize=1024)
def get_activation_distribution(image_name: str, model_type: str) -> np.ndarray:
"""Cached function to get activation distribution."""
activation = get_data(image_name, model_type)[0]
noisy_features_indices = (
(_CACHE['sae_data_dict']["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
)
activation[:, noisy_features_indices] = 0
return activation
@lru_cache(maxsize=1024)
def get_segmask(selected_image: str, slider_value: int, model_type: str) -> np.ndarray:
"""Cached function to get segmentation mask."""
cache_key = f"{selected_image}_{slider_value}_{model_type}"
if cache_key not in _CACHE['segmasks']:
image = _CACHE['data_dict'][selected_image]["image"]
sae_act = get_data(selected_image, model_type)[0]
temp = sae_act[:, slider_value]
mask = torch.Tensor(temp[1:].reshape(14, 14)).view(1, 1, 14, 14)
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
base_opacity = 30
image_array = np.array(image)[..., :3]
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
rgba_overlay[..., :3] = image_array[..., :3]
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
rgba_overlay[..., 3] = 255
_CACHE['segmasks'][cache_key] = rgba_overlay
return _CACHE['segmasks'][cache_key]
@lru_cache(maxsize=1024)
def get_top_images(slider_value: int, toggle_btn: bool) -> List[Image.Image]:
"""Cached function to get top images."""
cache_key = f"{slider_value}_{toggle_btn}"
if cache_key not in _CACHE['top_images']:
dataset_path = "./data/top_images_masked" if toggle_btn else "./data/top_images"
paths = [
os.path.join(dataset_path, dataset, f"{slider_value}.jpg")
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
]
_CACHE['top_images'][cache_key] = [
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
for path in paths
]
return _CACHE['top_images'][cache_key]
# def preload_activation(image_name):
# for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
# image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
# with gzip.open(image_file, "rb") as f:
# preloaded_data[model] = pickle.load(f)
# def get_activation_distribution(image_name: str, model_type: str):
# activation = get_data(image_name, model_type)[0]
# noisy_features_indices = (
# (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
# )
# activation[:, noisy_features_indices] = 0
# return activation
def get_grid_loc(evt, image):
# Get click coordinates
x, y = evt._data["index"][0], evt._data["index"][1]
cell_width = image.width // GRID_NUM
cell_height = image.height // GRID_NUM
grid_x = x // cell_width
grid_y = y // cell_height
return grid_x, grid_y, cell_width, cell_height
def highlight_grid(evt: gr.EventData, image_name):
image = data_dict[image_name]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
highlighted_image = image.copy()
draw = ImageDraw.Draw(highlighted_image)
box = [
grid_x * cell_width,
grid_y * cell_height,
(grid_x + 1) * cell_width,
(grid_y + 1) * cell_height,
]
draw.rectangle(box, outline="red", width=3)
return highlighted_image
def load_image(img_name):
return Image.open(data_dict[img_name]["image_path"]).resize(
(IMAGE_SIZE, IMAGE_SIZE)
)
def plot_activations(
all_activation,
tile_activations=None,
grid_x=None,
grid_y=None,
top_k=5,
colors=("blue", "cyan"),
model_name="CLIP",
):
fig = go.Figure()
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
fig.add_trace(
go.Scatter(
x=np.arange(len(activations)),
y=activations,
mode="lines",
name=label,
line=dict(color=color, dash="solid"),
showlegend=True,
)
)
top_neurons = np.argsort(activations)[::-1][:top_k]
for idx in top_neurons:
fig.add_annotation(
x=idx,
y=activations[idx],
text=str(idx),
showarrow=True,
arrowhead=2,
ax=0,
ay=-15,
arrowcolor=color,
opacity=0.7,
)
return fig
label = f"{model_name.split('-')[-0]} Image-level"
fig = _add_scatter_with_annotation(
fig, all_activation, model_name, colors[0], label
)
if tile_activations is not None:
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
fig = _add_scatter_with_annotation(
fig, tile_activations, model_name, colors[1], label
)
fig.update_layout(
title="Activation Distribution",
xaxis_title="SAE latent index",
yaxis_title="Activation Value",
template="plotly_white",
)
fig.update_layout(
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)
)
return fig
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
activation = get_activation_distribution(selected_image, model_name)
all_activation = activation.mean(0)
tile_activations = None
grid_x = None
grid_y = None
if evt is not None:
if evt._data is not None:
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = activation[token_idx]
fig = plot_activations(
all_activation,
tile_activations,
grid_x,
grid_y,
top_k=5,
model_name=model_name,
colors=colors,
)
return fig
def plot_activation_distribution(
evt: gr.EventData, selected_image: str, model_name: str
):
fig = make_subplots(
rows=2,
cols=1,
shared_xaxes=True,
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
)
fig_clip = get_activations(
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
)
fig_maple = get_activations(
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
)
def _attach_fig(fig, sub_fig, row, col, yref):
for trace in sub_fig.data:
fig.add_trace(trace, row=row, col=col)
for annotation in sub_fig.layout.annotations:
annotation.update(yref=yref)
fig.add_annotation(annotation)
return fig
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
fig.update_layout(
# height=500,
# title="Activation Distributions",
template="plotly_white",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
margin=dict(l=20, r=20, t=40, b=20),
)
return fig
# def get_segmask(selected_image, slider_value, model_type):
# image = data_dict[selected_image]["image"]
# sae_act = get_data(selected_image, model_type)[0]
# temp = sae_act[:, slider_value]
# try:
# mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
# except Exception as e:
# print(sae_act.shape, slider_value)
# mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][
# 0
# ].numpy()
# mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
# base_opacity = 30
# image_array = np.array(image)[..., :3]
# rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
# rgba_overlay[..., :3] = image_array[..., :3]
# darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
# rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
# rgba_overlay[..., 3] = 255 # Fully opaque
# return rgba_overlay
# def get_top_images(slider_value, toggle_btn):
# def _get_images(dataset_path):
# top_image_paths = [
# os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
# os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
# os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
# ]
# top_images = [
# (
# Image.open(path)
# if os.path.exists(path)
# else Image.new("RGB", (256, 256), (255, 255, 255))
# )
# for path in top_image_paths
# ]
# return top_images
# if toggle_btn:
# top_images = _get_images("./data/top_images_masked")
# else:
# top_images = _get_images("./data/top_images")
# return top_images
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
top_images = get_top_images(slider_value, toggle_btn)
act_values = []
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
act_value = [str(round(value, 3)) for value in act_value]
act_value = " | ".join(act_value)
out = f"#### Activation values: {act_value}"
act_values.append(out)
return rgba_overlay, top_images, act_values
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
rgba_overlay, top_images, act_values = show_activation_heatmap(
selected_image, slider_value, "CLIP", toggle_btn
)
sleep(0.1)
return (
rgba_overlay,
top_images[0],
top_images[1],
top_images[2],
act_values[0],
act_values[1],
act_values[2],
)
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
sleep(0.1)
return rgba_overlay
def get_init_radio_options(selected_image, model_name):
clip_neuron_dict = {}
maple_neuron_dict = {}
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
activations = get_activation_distribution(selected_image, model_name).mean(0)
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
sorted_dict = dict(
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
)
return sorted_dict
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(
selected_image, model_name, maple_neuron_dict
)
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
return radio_choices
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
return out
def update_radio_options(evt: gr.EventData, selected_image, model_name):
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
all_activation = get_activation_distribution(selected_image, model_name)
image_activation = all_activation.mean(0)
_sort_and_save_top_k(image_activation, neuron_dict)
if evt is not None:
if evt._data is not None and isinstance(evt._data["index"], list):
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = all_activation[token_idx]
_sort_and_save_top_k(tile_activations, neuron_dict)
sorted_dict = dict(
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
)
return sorted_dict
clip_neuron_dict = {}
maple_neuron_dict = {}
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(
evt, selected_image, model_name, maple_neuron_dict
)
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
radio_choices = gr.Radio(
choices=out, label="Top activating SAE latent", value=out[0]
)
sleep(0.1)
return radio_choices
def update_markdown(option_value):
latent_idx = int(option_value.split("-")[-1])
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
return out_1, out_2
def get_data(image_name, model_name):
pkl_root = "./data/out"
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
out = data
return out
def update_all(selected_image, slider_value, toggle_btn, model_name):
(
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
) = show_activation_heatmap_clip(selected_image, slider_value, toggle_btn)
seg_mask_display_maple = show_activation_heatmap_maple(
selected_image, slider_value, model_name
)
markdown_display, markdown_display_2 = update_markdown(slider_value)
return (
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
)
def load_all_data(image_root, pkl_root):
image_files = glob(f"{image_root}/*")
data_dict = {}
for image_file in image_files:
image_name = os.path.basename(image_file).split(".")[0]
if image_file not in data_dict:
data_dict[image_name] = {
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
"image_path": image_file,
}
sae_data_dict = {}
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_acts"] = data
sae_data_dict["mean_act_values"] = {}
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_act_values"][dataset] = data
return data_dict, sae_data_dict
def preload_all_model_data():
"""Preload all model data into memory at startup"""
print("Preloading model data...")
for image_name in data_dict.keys():
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
try:
data = get_data(image_name, model_name)
cache_key = f"{model_name}_{image_name}"
_CACHE['model_data'][cache_key] = data
except Exception as e:
print(f"Error preloading {cache_key}: {e}")
def precompute_activations():
"""Precompute and cache common activation patterns"""
print("Precomputing activations...")
for image_name in data_dict.keys():
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
activation = get_activation_distribution(image_name, model_name)
cache_key = f"activation_{model_name}_{image_name}"
_CACHE['precomputed_activations'][cache_key] = activation.mean(0)
def precompute_segmasks():
"""Precompute common segmentation masks"""
print("Precomputing segmentation masks...")
for image_name in data_dict.keys():
for model_type in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
for slider_value in range(0, 100): # Adjust range as needed
try:
mask = get_segmask(image_name, slider_value, model_type)
cache_key = f"{image_name}_{slider_value}_{model_type}"
_CACHE['segmasks'][cache_key] = mask
except Exception as e:
print(f"Error precomputing mask {cache_key}: {e}")
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
with gr.Row():
with gr.Column():
# Left View: Image selection and click handling
gr.Markdown("## Select input image and patch on the image")
image_selector = gr.Dropdown(
choices=list(data_dict.keys()),
value=default_image_name,
label="Select Image",
)
image_display = gr.Image(
value=data_dict[default_image_name]["image"],
type="pil",
interactive=True,
)
# Update image display when a new image is selected
image_selector.change(
fn=lambda img_name: data_dict[img_name]["image"],
inputs=image_selector,
outputs=image_display,
)
image_display.select(
fn=highlight_grid, inputs=[image_selector], outputs=[image_display]
)
with gr.Column():
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
model_selector = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select adapted model (MaPLe)",
)
init_plot = plot_activation_distribution(
None, default_image_name, model_options[0]
)
neuron_plot = gr.Plot(
label="Neuron Activation", value=init_plot, show_label=False
)
image_selector.change(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
image_display.select(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
model_selector.change(
fn=load_image, inputs=[image_selector], outputs=image_display
)
model_selector.change(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
with gr.Row():
with gr.Column():
radio_names = get_init_radio_options(default_image_name, model_options[0])
feautre_idx = radio_names[0].split("-")[-1]
markdown_display = gr.Markdown(
f"## Segmentation mask for the selected SAE latent - {feautre_idx}"
)
init_seg, init_tops, init_values = show_activation_heatmap(
default_image_name, radio_names[0], "CLIP"
)
gr.Markdown("### Localize SAE latent activation using CLIP")
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
init_seg_maple, _, _ = show_activation_heatmap(
default_image_name, radio_names[0], model_options[0]
)
gr.Markdown("### Localize SAE latent activation using MaPLE")
seg_mask_display_maple = gr.Image(
value=init_seg_maple, type="pil", show_label=False
)
with gr.Column():
gr.Markdown("## Top activating SAE latent index")
radio_choices = gr.Radio(
choices=radio_names,
label="Top activating SAE latent",
interactive=True,
value=radio_names[0],
)
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
markdown_display_2 = gr.Markdown(
f"## Top reference images for the selected SAE latent - {feautre_idx}"
)
gr.Markdown("### ImageNet")
top_image_1 = gr.Image(
value=init_tops[0], type="pil", label="ImageNet", show_label=False
)
act_value_1 = gr.Markdown(init_values[0])
gr.Markdown("### ImageNet-Sketch")
top_image_2 = gr.Image(
value=init_tops[1],
type="pil",
label="ImageNet-Sketch",
show_label=False,
)
act_value_2 = gr.Markdown(init_values[1])
gr.Markdown("### Caltech101")
top_image_3 = gr.Image(
value=init_tops[2], type="pil", label="Caltech101", show_label=False
)
act_value_3 = gr.Markdown(init_values[2])
image_display.select(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
model_selector.change(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
image_selector.select(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
radio_choices.change(
fn=update_all,
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
outputs=[
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
],
)
toggle_btn.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
],
)
# Launch the app
# demo.queue()
# demo.launch()
# if __name__ == "__main__":
# demo.queue() # Enable queuing for better handling of concurrent users
# demo.launch(
# server_name="0.0.0.0", # Allow external access
# server_port=7860,
# share=False, # Set to True if you want to create a public URL
# show_error=True,
# # Optimize concurrency
# max_threads=8, # Adjust based on your CPU cores
# )
if __name__ == "__main__":
import psutil
# Get system memory info
mem = psutil.virtual_memory()
total_ram_gb = mem.total / (1024**3)
# Configure cache sizes based on available RAM
cache_size = int(total_ram_gb * 100) # Rough estimate: 100 entries per GB
# Memory monitoring function
def monitor_memory_usage():
"""Monitor and log memory usage"""
process = psutil.Process()
mem_info = process.memory_info()
print(f"""
Memory Usage:
- RSS: {mem_info.rss / (1024**2):.2f} MB
- VMS: {mem_info.vms / (1024**2):.2f} MB
- Cache Size: {len(_CACHE['model_data'])} entries
""")
# Start periodic monitoring
def start_memory_monitor():
threading.Timer(300.0, start_memory_monitor).start() # Every 5 minutes
monitor_memory_usage()
# Start the monitoring
import threading
start_memory_monitor()
# Add to initialization
preload_all_model_data()
_CACHE['precomputed_activations'] = {}
precompute_activations()
precompute_segmasks()
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"
# Launch the app with memory-optimized settings
demo.queue(max_size=min(20, int(total_ram_gb))) # Scale queue with RAM
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
max_threads=min(16, psutil.cpu_count()), # Scale threads with CPU
websocket_ping_timeout=60,
preventive_refresh=True,
memory_limit_mb=int(total_ram_gb * 1024 * 0.8) # Use up to 80% of RAM
)