|
import gzip |
|
import os |
|
import pickle |
|
from glob import glob |
|
from time import sleep |
|
|
|
from functools import lru_cache |
|
import concurrent.futures |
|
from typing import Dict, Tuple, List |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
import torch |
|
from PIL import Image, ImageDraw |
|
from plotly.subplots import make_subplots |
|
|
|
IMAGE_SIZE = 400 |
|
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"] |
|
GRID_NUM = 14 |
|
pkl_root = "./data/out" |
|
preloaded_data = {} |
|
|
|
|
|
|
|
_CACHE = { |
|
'data_dict': {}, |
|
'sae_data_dict': {}, |
|
'model_data': {}, |
|
'segmasks': {}, |
|
'top_images': {} |
|
} |
|
|
|
def load_all_data(image_root: str, pkl_root: str) -> Tuple[Dict, Dict]: |
|
"""Load all data with optimized parallel processing.""" |
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
image_files = glob(f"{image_root}/*") |
|
future_to_file = { |
|
executor.submit(_load_image_file, image_file): image_file |
|
for image_file in image_files |
|
} |
|
|
|
for future in concurrent.futures.as_completed(future_to_file): |
|
image_file = future_to_file[future] |
|
image_name = os.path.basename(image_file).split(".")[0] |
|
result = future.result() |
|
if result is not None: |
|
_CACHE['data_dict'][image_name] = result |
|
|
|
|
|
with open("./data/sae_data/mean_acts.pkl", "rb") as f: |
|
_CACHE['sae_data_dict']["mean_acts"] = pickle.load(f) |
|
|
|
|
|
datasets = ["imagenet", "imagenet-sketch", "caltech101"] |
|
_CACHE['sae_data_dict']["mean_act_values"] = {} |
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
future_to_dataset = { |
|
executor.submit(_load_mean_act_values, dataset): dataset |
|
for dataset in datasets |
|
} |
|
|
|
for future in concurrent.futures.as_completed(future_to_dataset): |
|
dataset = future_to_dataset[future] |
|
result = future.result() |
|
if result is not None: |
|
_CACHE['sae_data_dict']["mean_act_values"][dataset] = result |
|
|
|
return _CACHE['data_dict'], _CACHE['sae_data_dict'] |
|
|
|
def _load_image_file(image_file: str) -> Dict: |
|
"""Helper function to load a single image file.""" |
|
try: |
|
image = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)) |
|
return { |
|
"image": image, |
|
"image_path": image_file, |
|
} |
|
except Exception as e: |
|
print(f"Error loading {image_file}: {e}") |
|
return None |
|
|
|
def _load_mean_act_values(dataset: str) -> np.ndarray: |
|
"""Helper function to load mean act values for a dataset.""" |
|
try: |
|
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f: |
|
return pickle.load(f) |
|
except Exception as e: |
|
print(f"Error loading mean act values for {dataset}: {e}") |
|
return None |
|
|
|
@lru_cache(maxsize=1024) |
|
def get_data(image_name: str, model_name: str) -> np.ndarray: |
|
"""Cached function to get model data.""" |
|
cache_key = f"{model_name}_{image_name}" |
|
if cache_key not in _CACHE['model_data']: |
|
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz" |
|
with gzip.open(data_dir, "rb") as f: |
|
_CACHE['model_data'][cache_key] = pickle.load(f) |
|
return _CACHE['model_data'][cache_key] |
|
|
|
@lru_cache(maxsize=1024) |
|
def get_activation_distribution(image_name: str, model_type: str) -> np.ndarray: |
|
"""Cached function to get activation distribution.""" |
|
activation = get_data(image_name, model_type)[0] |
|
noisy_features_indices = ( |
|
(_CACHE['sae_data_dict']["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist() |
|
) |
|
activation[:, noisy_features_indices] = 0 |
|
return activation |
|
|
|
@lru_cache(maxsize=1024) |
|
def get_segmask(selected_image: str, slider_value: int, model_type: str) -> np.ndarray: |
|
"""Cached function to get segmentation mask.""" |
|
cache_key = f"{selected_image}_{slider_value}_{model_type}" |
|
if cache_key not in _CACHE['segmasks']: |
|
image = _CACHE['data_dict'][selected_image]["image"] |
|
sae_act = get_data(selected_image, model_type)[0] |
|
temp = sae_act[:, slider_value] |
|
|
|
mask = torch.Tensor(temp[1:].reshape(14, 14)).view(1, 1, 14, 14) |
|
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy() |
|
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10) |
|
|
|
base_opacity = 30 |
|
image_array = np.array(image)[..., :3] |
|
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8) |
|
rgba_overlay[..., :3] = image_array[..., :3] |
|
|
|
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8) |
|
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0] |
|
rgba_overlay[..., 3] = 255 |
|
|
|
_CACHE['segmasks'][cache_key] = rgba_overlay |
|
|
|
return _CACHE['segmasks'][cache_key] |
|
|
|
@lru_cache(maxsize=1024) |
|
def get_top_images(slider_value: int, toggle_btn: bool) -> List[Image.Image]: |
|
"""Cached function to get top images.""" |
|
cache_key = f"{slider_value}_{toggle_btn}" |
|
if cache_key not in _CACHE['top_images']: |
|
dataset_path = "./data/top_images_masked" if toggle_btn else "./data/top_images" |
|
paths = [ |
|
os.path.join(dataset_path, dataset, f"{slider_value}.jpg") |
|
for dataset in ["imagenet", "imagenet-sketch", "caltech101"] |
|
] |
|
|
|
_CACHE['top_images'][cache_key] = [ |
|
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255)) |
|
for path in paths |
|
] |
|
|
|
return _CACHE['top_images'][cache_key] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_grid_loc(evt, image): |
|
|
|
x, y = evt._data["index"][0], evt._data["index"][1] |
|
|
|
cell_width = image.width // GRID_NUM |
|
cell_height = image.height // GRID_NUM |
|
|
|
grid_x = x // cell_width |
|
grid_y = y // cell_height |
|
return grid_x, grid_y, cell_width, cell_height |
|
|
|
|
|
def highlight_grid(evt: gr.EventData, image_name): |
|
image = data_dict[image_name]["image"] |
|
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) |
|
|
|
highlighted_image = image.copy() |
|
draw = ImageDraw.Draw(highlighted_image) |
|
box = [ |
|
grid_x * cell_width, |
|
grid_y * cell_height, |
|
(grid_x + 1) * cell_width, |
|
(grid_y + 1) * cell_height, |
|
] |
|
draw.rectangle(box, outline="red", width=3) |
|
|
|
return highlighted_image |
|
|
|
|
|
def load_image(img_name): |
|
return Image.open(data_dict[img_name]["image_path"]).resize( |
|
(IMAGE_SIZE, IMAGE_SIZE) |
|
) |
|
|
|
|
|
def plot_activations( |
|
all_activation, |
|
tile_activations=None, |
|
grid_x=None, |
|
grid_y=None, |
|
top_k=5, |
|
colors=("blue", "cyan"), |
|
model_name="CLIP", |
|
): |
|
fig = go.Figure() |
|
|
|
def _add_scatter_with_annotation(fig, activations, model_name, color, label): |
|
fig.add_trace( |
|
go.Scatter( |
|
x=np.arange(len(activations)), |
|
y=activations, |
|
mode="lines", |
|
name=label, |
|
line=dict(color=color, dash="solid"), |
|
showlegend=True, |
|
) |
|
) |
|
top_neurons = np.argsort(activations)[::-1][:top_k] |
|
for idx in top_neurons: |
|
fig.add_annotation( |
|
x=idx, |
|
y=activations[idx], |
|
text=str(idx), |
|
showarrow=True, |
|
arrowhead=2, |
|
ax=0, |
|
ay=-15, |
|
arrowcolor=color, |
|
opacity=0.7, |
|
) |
|
return fig |
|
|
|
label = f"{model_name.split('-')[-0]} Image-level" |
|
fig = _add_scatter_with_annotation( |
|
fig, all_activation, model_name, colors[0], label |
|
) |
|
if tile_activations is not None: |
|
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})" |
|
fig = _add_scatter_with_annotation( |
|
fig, tile_activations, model_name, colors[1], label |
|
) |
|
|
|
fig.update_layout( |
|
title="Activation Distribution", |
|
xaxis_title="SAE latent index", |
|
yaxis_title="Activation Value", |
|
template="plotly_white", |
|
) |
|
fig.update_layout( |
|
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5) |
|
) |
|
|
|
return fig |
|
|
|
|
|
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors): |
|
activation = get_activation_distribution(selected_image, model_name) |
|
all_activation = activation.mean(0) |
|
|
|
tile_activations = None |
|
grid_x = None |
|
grid_y = None |
|
|
|
if evt is not None: |
|
if evt._data is not None: |
|
image = data_dict[selected_image]["image"] |
|
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) |
|
token_idx = grid_y * GRID_NUM + grid_x + 1 |
|
tile_activations = activation[token_idx] |
|
|
|
fig = plot_activations( |
|
all_activation, |
|
tile_activations, |
|
grid_x, |
|
grid_y, |
|
top_k=5, |
|
model_name=model_name, |
|
colors=colors, |
|
) |
|
return fig |
|
|
|
|
|
def plot_activation_distribution( |
|
evt: gr.EventData, selected_image: str, model_name: str |
|
): |
|
fig = make_subplots( |
|
rows=2, |
|
cols=1, |
|
shared_xaxes=True, |
|
subplot_titles=["CLIP Activation", f"{model_name} Activation"], |
|
) |
|
|
|
fig_clip = get_activations( |
|
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef") |
|
) |
|
fig_maple = get_activations( |
|
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4") |
|
) |
|
|
|
def _attach_fig(fig, sub_fig, row, col, yref): |
|
for trace in sub_fig.data: |
|
fig.add_trace(trace, row=row, col=col) |
|
|
|
for annotation in sub_fig.layout.annotations: |
|
annotation.update(yref=yref) |
|
fig.add_annotation(annotation) |
|
return fig |
|
|
|
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1") |
|
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2") |
|
|
|
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1) |
|
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1) |
|
fig.update_yaxes(title_text="Activation Value", row=1, col=1) |
|
fig.update_yaxes(title_text="Activation Value", row=2, col=1) |
|
fig.update_layout( |
|
|
|
|
|
template="plotly_white", |
|
showlegend=True, |
|
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5), |
|
margin=dict(l=20, r=20, t=40, b=20), |
|
) |
|
|
|
return fig |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False): |
|
slider_value = int(slider_value.split("-")[-1]) |
|
rgba_overlay = get_segmask(selected_image, slider_value, model_type) |
|
top_images = get_top_images(slider_value, toggle_btn) |
|
|
|
act_values = [] |
|
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]: |
|
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5] |
|
act_value = [str(round(value, 3)) for value in act_value] |
|
act_value = " | ".join(act_value) |
|
out = f"#### Activation values: {act_value}" |
|
act_values.append(out) |
|
|
|
return rgba_overlay, top_images, act_values |
|
|
|
|
|
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn): |
|
rgba_overlay, top_images, act_values = show_activation_heatmap( |
|
selected_image, slider_value, "CLIP", toggle_btn |
|
) |
|
sleep(0.1) |
|
return ( |
|
rgba_overlay, |
|
top_images[0], |
|
top_images[1], |
|
top_images[2], |
|
act_values[0], |
|
act_values[1], |
|
act_values[2], |
|
) |
|
|
|
|
|
def show_activation_heatmap_maple(selected_image, slider_value, model_name): |
|
slider_value = int(slider_value.split("-")[-1]) |
|
rgba_overlay = get_segmask(selected_image, slider_value, model_name) |
|
sleep(0.1) |
|
return rgba_overlay |
|
|
|
|
|
def get_init_radio_options(selected_image, model_name): |
|
clip_neuron_dict = {} |
|
maple_neuron_dict = {} |
|
|
|
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5): |
|
activations = get_activation_distribution(selected_image, model_name).mean(0) |
|
top_neurons = list(np.argsort(activations)[::-1][:top_k]) |
|
for top_neuron in top_neurons: |
|
neuron_dict[top_neuron] = activations[top_neuron] |
|
sorted_dict = dict( |
|
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True) |
|
) |
|
return sorted_dict |
|
|
|
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict) |
|
maple_neuron_dict = _get_top_actvation( |
|
selected_image, model_name, maple_neuron_dict |
|
) |
|
|
|
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict) |
|
|
|
return radio_choices |
|
|
|
|
|
def get_radio_names(clip_neuron_dict, maple_neuron_dict): |
|
clip_keys = list(clip_neuron_dict.keys()) |
|
maple_keys = list(maple_neuron_dict.keys()) |
|
|
|
common_keys = list(set(clip_keys).intersection(set(maple_keys))) |
|
clip_only_keys = list(set(clip_keys) - (set(maple_keys))) |
|
maple_only_keys = list(set(maple_keys) - (set(clip_keys))) |
|
|
|
common_keys.sort( |
|
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True |
|
) |
|
clip_only_keys.sort(reverse=True) |
|
maple_only_keys.sort(reverse=True) |
|
|
|
out = [] |
|
out.extend([f"common-{i}" for i in common_keys[:5]]) |
|
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]]) |
|
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]]) |
|
|
|
return out |
|
|
|
|
|
def update_radio_options(evt: gr.EventData, selected_image, model_name): |
|
def _sort_and_save_top_k(activations, neuron_dict, top_k=5): |
|
top_neurons = list(np.argsort(activations)[::-1][:top_k]) |
|
for top_neuron in top_neurons: |
|
neuron_dict[top_neuron] = activations[top_neuron] |
|
|
|
def _get_top_actvation(evt, selected_image, model_name, neuron_dict): |
|
all_activation = get_activation_distribution(selected_image, model_name) |
|
image_activation = all_activation.mean(0) |
|
_sort_and_save_top_k(image_activation, neuron_dict) |
|
|
|
if evt is not None: |
|
if evt._data is not None and isinstance(evt._data["index"], list): |
|
image = data_dict[selected_image]["image"] |
|
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) |
|
token_idx = grid_y * GRID_NUM + grid_x + 1 |
|
tile_activations = all_activation[token_idx] |
|
_sort_and_save_top_k(tile_activations, neuron_dict) |
|
|
|
sorted_dict = dict( |
|
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True) |
|
) |
|
return sorted_dict |
|
|
|
clip_neuron_dict = {} |
|
maple_neuron_dict = {} |
|
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict) |
|
maple_neuron_dict = _get_top_actvation( |
|
evt, selected_image, model_name, maple_neuron_dict |
|
) |
|
|
|
clip_keys = list(clip_neuron_dict.keys()) |
|
maple_keys = list(maple_neuron_dict.keys()) |
|
|
|
common_keys = list(set(clip_keys).intersection(set(maple_keys))) |
|
clip_only_keys = list(set(clip_keys) - (set(maple_keys))) |
|
maple_only_keys = list(set(maple_keys) - (set(clip_keys))) |
|
|
|
common_keys.sort( |
|
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True |
|
) |
|
clip_only_keys.sort(reverse=True) |
|
maple_only_keys.sort(reverse=True) |
|
|
|
out = [] |
|
out.extend([f"common-{i}" for i in common_keys[:5]]) |
|
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]]) |
|
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]]) |
|
|
|
radio_choices = gr.Radio( |
|
choices=out, label="Top activating SAE latent", value=out[0] |
|
) |
|
sleep(0.1) |
|
return radio_choices |
|
|
|
|
|
def update_markdown(option_value): |
|
latent_idx = int(option_value.split("-")[-1]) |
|
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}" |
|
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}" |
|
return out_1, out_2 |
|
|
|
|
|
def get_data(image_name, model_name): |
|
pkl_root = "./data/out" |
|
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz" |
|
with gzip.open(data_dir, "rb") as f: |
|
data = pickle.load(f) |
|
out = data |
|
|
|
return out |
|
|
|
|
|
def update_all(selected_image, slider_value, toggle_btn, model_name): |
|
( |
|
seg_mask_display, |
|
top_image_1, |
|
top_image_2, |
|
top_image_3, |
|
act_value_1, |
|
act_value_2, |
|
act_value_3, |
|
) = show_activation_heatmap_clip(selected_image, slider_value, toggle_btn) |
|
seg_mask_display_maple = show_activation_heatmap_maple( |
|
selected_image, slider_value, model_name |
|
) |
|
markdown_display, markdown_display_2 = update_markdown(slider_value) |
|
|
|
return ( |
|
seg_mask_display, |
|
seg_mask_display_maple, |
|
top_image_1, |
|
top_image_2, |
|
top_image_3, |
|
act_value_1, |
|
act_value_2, |
|
act_value_3, |
|
markdown_display, |
|
markdown_display_2, |
|
) |
|
|
|
|
|
def load_all_data(image_root, pkl_root): |
|
image_files = glob(f"{image_root}/*") |
|
data_dict = {} |
|
for image_file in image_files: |
|
image_name = os.path.basename(image_file).split(".")[0] |
|
if image_file not in data_dict: |
|
data_dict[image_name] = { |
|
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)), |
|
"image_path": image_file, |
|
} |
|
|
|
sae_data_dict = {} |
|
with open("./data/sae_data/mean_acts.pkl", "rb") as f: |
|
data = pickle.load(f) |
|
sae_data_dict["mean_acts"] = data |
|
|
|
sae_data_dict["mean_act_values"] = {} |
|
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]: |
|
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f: |
|
data = pickle.load(f) |
|
sae_data_dict["mean_act_values"][dataset] = data |
|
|
|
return data_dict, sae_data_dict |
|
|
|
|
|
def preload_all_model_data(): |
|
"""Preload all model data into memory at startup""" |
|
print("Preloading model data...") |
|
for image_name in data_dict.keys(): |
|
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]: |
|
try: |
|
data = get_data(image_name, model_name) |
|
cache_key = f"{model_name}_{image_name}" |
|
_CACHE['model_data'][cache_key] = data |
|
except Exception as e: |
|
print(f"Error preloading {cache_key}: {e}") |
|
|
|
def precompute_activations(): |
|
"""Precompute and cache common activation patterns""" |
|
print("Precomputing activations...") |
|
for image_name in data_dict.keys(): |
|
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]: |
|
activation = get_activation_distribution(image_name, model_name) |
|
cache_key = f"activation_{model_name}_{image_name}" |
|
_CACHE['precomputed_activations'][cache_key] = activation.mean(0) |
|
|
|
|
|
|
|
def precompute_segmasks(): |
|
"""Precompute common segmentation masks""" |
|
print("Precomputing segmentation masks...") |
|
for image_name in data_dict.keys(): |
|
for model_type in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]: |
|
for slider_value in range(0, 100): |
|
try: |
|
mask = get_segmask(image_name, slider_value, model_type) |
|
cache_key = f"{image_name}_{slider_value}_{model_type}" |
|
_CACHE['segmasks'][cache_key] = mask |
|
except Exception as e: |
|
print(f"Error precomputing mask {cache_key}: {e}") |
|
|
|
|
|
with gr.Blocks( |
|
theme=gr.themes.Citrus(), |
|
css=""" |
|
.image-row .gr-image { margin: 0 !important; padding: 0 !important; } |
|
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */ |
|
""", |
|
) as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
gr.Markdown("## Select input image and patch on the image") |
|
image_selector = gr.Dropdown( |
|
choices=list(data_dict.keys()), |
|
value=default_image_name, |
|
label="Select Image", |
|
) |
|
image_display = gr.Image( |
|
value=data_dict[default_image_name]["image"], |
|
type="pil", |
|
interactive=True, |
|
) |
|
|
|
|
|
image_selector.change( |
|
fn=lambda img_name: data_dict[img_name]["image"], |
|
inputs=image_selector, |
|
outputs=image_display, |
|
) |
|
image_display.select( |
|
fn=highlight_grid, inputs=[image_selector], outputs=[image_display] |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("## SAE latent activations of CLIP and MaPLE") |
|
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST] |
|
model_selector = gr.Dropdown( |
|
choices=model_options, |
|
value=model_options[0], |
|
label="Select adapted model (MaPLe)", |
|
) |
|
init_plot = plot_activation_distribution( |
|
None, default_image_name, model_options[0] |
|
) |
|
neuron_plot = gr.Plot( |
|
label="Neuron Activation", value=init_plot, show_label=False |
|
) |
|
|
|
image_selector.change( |
|
fn=plot_activation_distribution, |
|
inputs=[image_selector, model_selector], |
|
outputs=neuron_plot, |
|
) |
|
image_display.select( |
|
fn=plot_activation_distribution, |
|
inputs=[image_selector, model_selector], |
|
outputs=neuron_plot, |
|
) |
|
model_selector.change( |
|
fn=load_image, inputs=[image_selector], outputs=image_display |
|
) |
|
model_selector.change( |
|
fn=plot_activation_distribution, |
|
inputs=[image_selector, model_selector], |
|
outputs=neuron_plot, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
radio_names = get_init_radio_options(default_image_name, model_options[0]) |
|
|
|
feautre_idx = radio_names[0].split("-")[-1] |
|
markdown_display = gr.Markdown( |
|
f"## Segmentation mask for the selected SAE latent - {feautre_idx}" |
|
) |
|
init_seg, init_tops, init_values = show_activation_heatmap( |
|
default_image_name, radio_names[0], "CLIP" |
|
) |
|
|
|
gr.Markdown("### Localize SAE latent activation using CLIP") |
|
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False) |
|
init_seg_maple, _, _ = show_activation_heatmap( |
|
default_image_name, radio_names[0], model_options[0] |
|
) |
|
gr.Markdown("### Localize SAE latent activation using MaPLE") |
|
seg_mask_display_maple = gr.Image( |
|
value=init_seg_maple, type="pil", show_label=False |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("## Top activating SAE latent index") |
|
|
|
radio_choices = gr.Radio( |
|
choices=radio_names, |
|
label="Top activating SAE latent", |
|
interactive=True, |
|
value=radio_names[0], |
|
) |
|
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False) |
|
|
|
markdown_display_2 = gr.Markdown( |
|
f"## Top reference images for the selected SAE latent - {feautre_idx}" |
|
) |
|
|
|
gr.Markdown("### ImageNet") |
|
top_image_1 = gr.Image( |
|
value=init_tops[0], type="pil", label="ImageNet", show_label=False |
|
) |
|
act_value_1 = gr.Markdown(init_values[0]) |
|
|
|
gr.Markdown("### ImageNet-Sketch") |
|
top_image_2 = gr.Image( |
|
value=init_tops[1], |
|
type="pil", |
|
label="ImageNet-Sketch", |
|
show_label=False, |
|
) |
|
act_value_2 = gr.Markdown(init_values[1]) |
|
|
|
gr.Markdown("### Caltech101") |
|
top_image_3 = gr.Image( |
|
value=init_tops[2], type="pil", label="Caltech101", show_label=False |
|
) |
|
act_value_3 = gr.Markdown(init_values[2]) |
|
|
|
image_display.select( |
|
fn=update_radio_options, |
|
inputs=[image_selector, model_selector], |
|
outputs=[radio_choices], |
|
) |
|
|
|
model_selector.change( |
|
fn=update_radio_options, |
|
inputs=[image_selector, model_selector], |
|
outputs=[radio_choices], |
|
) |
|
|
|
image_selector.select( |
|
fn=update_radio_options, |
|
inputs=[image_selector, model_selector], |
|
outputs=[radio_choices], |
|
) |
|
|
|
radio_choices.change( |
|
fn=update_all, |
|
inputs=[image_selector, radio_choices, toggle_btn, model_selector], |
|
outputs=[ |
|
seg_mask_display, |
|
seg_mask_display_maple, |
|
top_image_1, |
|
top_image_2, |
|
top_image_3, |
|
act_value_1, |
|
act_value_2, |
|
act_value_3, |
|
markdown_display, |
|
markdown_display_2, |
|
], |
|
) |
|
|
|
toggle_btn.change( |
|
fn=show_activation_heatmap_clip, |
|
inputs=[image_selector, radio_choices, toggle_btn], |
|
outputs=[ |
|
seg_mask_display, |
|
top_image_1, |
|
top_image_2, |
|
top_image_3, |
|
act_value_1, |
|
act_value_2, |
|
act_value_3, |
|
], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import psutil |
|
|
|
|
|
mem = psutil.virtual_memory() |
|
total_ram_gb = mem.total / (1024**3) |
|
|
|
|
|
cache_size = int(total_ram_gb * 100) |
|
|
|
|
|
def monitor_memory_usage(): |
|
"""Monitor and log memory usage""" |
|
process = psutil.Process() |
|
mem_info = process.memory_info() |
|
print(f""" |
|
Memory Usage: |
|
- RSS: {mem_info.rss / (1024**2):.2f} MB |
|
- VMS: {mem_info.vms / (1024**2):.2f} MB |
|
- Cache Size: {len(_CACHE['model_data'])} entries |
|
""") |
|
|
|
|
|
def start_memory_monitor(): |
|
threading.Timer(300.0, start_memory_monitor).start() |
|
monitor_memory_usage() |
|
|
|
|
|
import threading |
|
start_memory_monitor() |
|
|
|
|
|
|
|
preload_all_model_data() |
|
|
|
_CACHE['precomputed_activations'] = {} |
|
precompute_activations() |
|
precompute_segmasks() |
|
|
|
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root) |
|
default_image_name = "christmas-imagenet" |
|
|
|
|
|
|
|
demo.queue(max_size=min(20, int(total_ram_gb))) |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
share=False, |
|
show_error=True, |
|
max_threads=min(16, psutil.cpu_count()), |
|
websocket_ping_timeout=60, |
|
preventive_refresh=True, |
|
memory_limit_mb=int(total_ram_gb * 1024 * 0.8) |
|
) |