Spaces:
Sleeping
Sleeping
import gzip | |
import os | |
import pickle | |
from glob import glob | |
from time import sleep | |
import gradio as gr | |
import numpy as np | |
import plotly.graph_objects as go | |
import torch | |
from PIL import Image, ImageDraw | |
from plotly.subplots import make_subplots | |
IMAGE_SIZE = 400 | |
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"] | |
GRID_NUM = 14 | |
pkl_root = "./data/out" | |
preloaded_data = {} | |
def preload_activation(image_name): | |
for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]: | |
image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz" | |
with gzip.open(image_file, "rb") as f: | |
preloaded_data[model] = pickle.load(f) | |
def get_activation_distribution(image_name: str, model_type: str): | |
activation = get_data(image_name, model_type)[0] | |
noisy_features_indices = (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist() | |
activation[:, noisy_features_indices] = 0 | |
return activation | |
def get_grid_loc(evt, image): | |
# Get click coordinates | |
x, y = evt._data["index"][0], evt._data["index"][1] | |
cell_width = image.width // GRID_NUM | |
cell_height = image.height // GRID_NUM | |
grid_x = x // cell_width | |
grid_y = y // cell_height | |
return grid_x, grid_y, cell_width, cell_height | |
def highlight_grid(evt: gr.EventData, image_name): | |
image = data_dict[image_name]["image"] | |
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) | |
highlighted_image = image.copy() | |
draw = ImageDraw.Draw(highlighted_image) | |
box = [grid_x * cell_width, grid_y * cell_height, (grid_x + 1) * cell_width, (grid_y + 1) * cell_height] | |
draw.rectangle(box, outline="red", width=3) | |
return highlighted_image | |
def load_image(img_name): | |
return Image.open(data_dict[img_name]["image_path"]).resize((IMAGE_SIZE, IMAGE_SIZE)) | |
def plot_activations( | |
all_activation, tile_activations=None, grid_x=None, grid_y=None, top_k=5, colors=("blue", "cyan"), model_name="CLIP" | |
): | |
fig = go.Figure() | |
def _add_scatter_with_annotation(fig, activations, model_name, color, label): | |
fig.add_trace( | |
go.Scatter( | |
x=np.arange(len(activations)), | |
y=activations, | |
mode="lines", | |
name=label, | |
line=dict(color=color, dash="solid"), | |
showlegend=True, | |
) | |
) | |
top_neurons = np.argsort(activations)[::-1][:top_k] | |
for idx in top_neurons: | |
fig.add_annotation( | |
x=idx, | |
y=activations[idx], | |
text=str(idx), | |
showarrow=True, | |
arrowhead=2, | |
ax=0, | |
ay=-15, | |
arrowcolor=color, | |
opacity=0.7, | |
) | |
return fig | |
label = f"{model_name.split('-')[-0]} Image-level" | |
fig = _add_scatter_with_annotation(fig, all_activation, model_name, colors[0], label) | |
if tile_activations is not None: | |
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})" | |
fig = _add_scatter_with_annotation(fig, tile_activations, model_name, colors[1], label) | |
fig.update_layout( | |
title="Activation Distribution", | |
xaxis_title="SAE latent index", | |
yaxis_title="Activation Value", | |
template="plotly_white", | |
) | |
fig.update_layout(legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)) | |
return fig | |
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors): | |
activation = get_activation_distribution(selected_image, model_name) | |
all_activation = activation.mean(0) | |
tile_activations = None | |
grid_x = None | |
grid_y = None | |
if evt is not None: | |
if evt._data is not None: | |
image = data_dict[selected_image]["image"] | |
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) | |
token_idx = grid_y * GRID_NUM + grid_x + 1 | |
tile_activations = activation[token_idx] | |
fig = plot_activations( | |
all_activation, tile_activations, grid_x, grid_y, top_k=5, model_name=model_name, colors=colors | |
) | |
return fig | |
def plot_activation_distribution(evt: gr.EventData, selected_image: str, model_name: str): | |
fig = make_subplots( | |
rows=2, | |
cols=1, | |
shared_xaxes=True, | |
subplot_titles=["CLIP Activation", f"{model_name} Activation"], | |
) | |
fig_clip = get_activations(evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")) | |
fig_maple = get_activations(evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")) | |
def _attach_fig(fig, sub_fig, row, col, yref): | |
for trace in sub_fig.data: | |
fig.add_trace(trace, row=row, col=col) | |
for annotation in sub_fig.layout.annotations: | |
annotation.update(yref=yref) | |
fig.add_annotation(annotation) | |
return fig | |
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1") | |
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2") | |
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1) | |
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1) | |
fig.update_yaxes(title_text="Activation Value", row=1, col=1) | |
fig.update_yaxes(title_text="Activation Value", row=2, col=1) | |
fig.update_layout( | |
# height=500, | |
# title="Activation Distributions", | |
template="plotly_white", | |
showlegend=True, | |
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5), | |
margin=dict(l=20, r=20, t=40, b=20), | |
) | |
return fig | |
def get_segmask(selected_image, slider_value, model_type): | |
image = data_dict[selected_image]["image"] | |
sae_act = get_data(selected_image, model_type)[0] | |
temp = sae_act[:, slider_value] | |
try: | |
mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14) | |
except Exception as e: | |
print(sae_act.shape, slider_value) | |
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy() | |
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10) | |
base_opacity = 30 | |
image_array = np.array(image)[..., :3] | |
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8) | |
rgba_overlay[..., :3] = image_array[..., :3] | |
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8) | |
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0] | |
rgba_overlay[..., 3] = 255 # Fully opaque | |
return rgba_overlay | |
def get_top_images(slider_value, toggle_btn): | |
def _get_images(dataset_path): | |
top_image_paths = [ | |
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"), | |
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"), | |
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"), | |
] | |
top_images = [ | |
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255)) | |
for path in top_image_paths | |
] | |
return top_images | |
if toggle_btn: | |
top_images = _get_images("./data/top_images_masked") | |
else: | |
top_images = _get_images("./data/top_images") | |
return top_images | |
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False): | |
slider_value = int(slider_value.split("-")[-1]) | |
rgba_overlay = get_segmask(selected_image, slider_value, model_type) | |
top_images = get_top_images(slider_value, toggle_btn) | |
act_values = [] | |
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]: | |
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5] | |
act_value = [str(round(value, 3)) for value in act_value] | |
act_value = " | ".join(act_value) | |
out = f"#### Activation values: {act_value}" | |
act_values.append(out) | |
return rgba_overlay, top_images, act_values | |
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn): | |
rgba_overlay, top_images, act_values = show_activation_heatmap(selected_image, slider_value, "CLIP", toggle_btn) | |
sleep(0.1) | |
return (rgba_overlay, top_images[0], top_images[1], top_images[2], act_values[0], act_values[1], act_values[2]) | |
def show_activation_heatmap_maple(selected_image, slider_value, model_name): | |
slider_value = int(slider_value.split("-")[-1]) | |
rgba_overlay = get_segmask(selected_image, slider_value, model_name) | |
sleep(0.1) | |
return rgba_overlay | |
def get_init_radio_options(selected_image, model_name): | |
clip_neuron_dict = {} | |
maple_neuron_dict = {} | |
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5): | |
activations = get_activation_distribution(selected_image, model_name).mean(0) | |
top_neurons = list(np.argsort(activations)[::-1][:top_k]) | |
for top_neuron in top_neurons: | |
neuron_dict[top_neuron] = activations[top_neuron] | |
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)) | |
return sorted_dict | |
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict) | |
maple_neuron_dict = _get_top_actvation(selected_image, model_name, maple_neuron_dict) | |
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict) | |
return radio_choices | |
def get_radio_names(clip_neuron_dict, maple_neuron_dict): | |
clip_keys = list(clip_neuron_dict.keys()) | |
maple_keys = list(maple_neuron_dict.keys()) | |
common_keys = list(set(clip_keys).intersection(set(maple_keys))) | |
clip_only_keys = list(set(clip_keys) - (set(maple_keys))) | |
maple_only_keys = list(set(maple_keys) - (set(clip_keys))) | |
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True) | |
clip_only_keys.sort(reverse=True) | |
maple_only_keys.sort(reverse=True) | |
out = [] | |
out.extend([f"common-{i}" for i in common_keys[:5]]) | |
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]]) | |
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]]) | |
return out | |
def update_radio_options(evt: gr.EventData, selected_image, model_name): | |
def _sort_and_save_top_k(activations, neuron_dict, top_k=5): | |
top_neurons = list(np.argsort(activations)[::-1][:top_k]) | |
for top_neuron in top_neurons: | |
neuron_dict[top_neuron] = activations[top_neuron] | |
def _get_top_actvation(evt, selected_image, model_name, neuron_dict): | |
all_activation = get_activation_distribution(selected_image, model_name) | |
image_activation = all_activation.mean(0) | |
_sort_and_save_top_k(image_activation, neuron_dict) | |
if evt is not None: | |
if evt._data is not None and isinstance(evt._data["index"], list): | |
image = data_dict[selected_image]["image"] | |
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image) | |
token_idx = grid_y * GRID_NUM + grid_x + 1 | |
tile_activations = all_activation[token_idx] | |
_sort_and_save_top_k(tile_activations, neuron_dict) | |
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)) | |
return sorted_dict | |
clip_neuron_dict = {} | |
maple_neuron_dict = {} | |
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict) | |
maple_neuron_dict = _get_top_actvation(evt, selected_image, model_name, maple_neuron_dict) | |
clip_keys = list(clip_neuron_dict.keys()) | |
maple_keys = list(maple_neuron_dict.keys()) | |
common_keys = list(set(clip_keys).intersection(set(maple_keys))) | |
clip_only_keys = list(set(clip_keys) - (set(maple_keys))) | |
maple_only_keys = list(set(maple_keys) - (set(clip_keys))) | |
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True) | |
clip_only_keys.sort(reverse=True) | |
maple_only_keys.sort(reverse=True) | |
out = [] | |
out.extend([f"common-{i}" for i in common_keys[:5]]) | |
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]]) | |
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]]) | |
radio_choices = gr.Radio(choices=out, label="Top activating SAE latent", value=out[0]) | |
sleep(0.1) | |
return radio_choices | |
def update_markdown(option_value): | |
latent_idx = int(option_value.split("-")[-1]) | |
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}" | |
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}" | |
return out_1, out_2 | |
def get_data(image_name, model_name): | |
pkl_root = "./data/out" | |
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz" | |
with gzip.open(data_dir, "rb") as f: | |
data = pickle.load(f) | |
out = data | |
return out | |
def load_all_data(image_root, pkl_root): | |
image_files = glob(f"{image_root}/*") | |
data_dict = {} | |
for image_file in image_files: | |
image_name = os.path.basename(image_file).split(".")[0] | |
if image_file not in data_dict: | |
data_dict[image_name] = { | |
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)), | |
"image_path": image_file, | |
} | |
sae_data_dict = {} | |
with open("./data/sae_data/mean_acts.pkl", "rb") as f: | |
data = pickle.load(f) | |
sae_data_dict["mean_acts"] = data | |
sae_data_dict["mean_act_values"] = {} | |
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]: | |
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f: | |
data = pickle.load(f) | |
sae_data_dict["mean_act_values"][dataset] = data | |
return data_dict, sae_data_dict | |
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root) | |
default_image_name = "christmas-imagenet" | |
with gr.Blocks( | |
theme=gr.themes.Citrus(), | |
css=""" | |
.image-row .gr-image { margin: 0 !important; padding: 0 !important; } | |
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */ | |
""", | |
) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
# Left View: Image selection and click handling | |
gr.Markdown("## Select input image and patch on the image") | |
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image") | |
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True) | |
# Update image display when a new image is selected | |
image_selector.change( | |
fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display | |
) | |
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display]) | |
with gr.Column(): | |
gr.Markdown("## SAE latent activations of CLIP and MaPLE") | |
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST] | |
model_selector = gr.Dropdown( | |
choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)" | |
) | |
init_plot = plot_activation_distribution(None, default_image_name, model_options[0]) | |
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False) | |
image_selector.change( | |
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot | |
) | |
image_display.select( | |
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot | |
) | |
model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display) | |
model_selector.change( | |
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot | |
) | |
with gr.Row(): | |
with gr.Column(): | |
radio_names = get_init_radio_options(default_image_name, model_options[0]) | |
feautre_idx = radio_names[0].split("-")[-1] | |
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}") | |
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP") | |
gr.Markdown("### Localize SAE latent activation using CLIP") | |
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False) | |
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0]) | |
gr.Markdown("### Localize SAE latent activation using MaPLE") | |
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False) | |
with gr.Column(): | |
gr.Markdown("## Top activating SAE latent index") | |
radio_choices = gr.Radio( | |
choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0] | |
) | |
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False) | |
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}") | |
gr.Markdown("### ImageNet") | |
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False) | |
act_value_1 = gr.Markdown(init_values[0]) | |
gr.Markdown("### ImageNet-Sketch") | |
top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False) | |
act_value_2 = gr.Markdown(init_values[1]) | |
gr.Markdown("### Caltech101") | |
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False) | |
act_value_3 = gr.Markdown(init_values[2]) | |
image_display.select( | |
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True | |
) | |
model_selector.change( | |
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True | |
) | |
image_selector.select( | |
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True | |
) | |
radio_choices.change( | |
fn=update_markdown, | |
inputs=[radio_choices], | |
outputs=[markdown_display, markdown_display_2], | |
queue=True, | |
) | |
radio_choices.change( | |
fn=show_activation_heatmap_clip, | |
inputs=[image_selector, radio_choices, toggle_btn], | |
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3], | |
queue=True, | |
) | |
radio_choices.change( | |
fn=show_activation_heatmap_maple, | |
inputs=[image_selector, radio_choices, model_selector], | |
outputs=[seg_mask_display_maple], | |
queue=True, | |
) | |
# toggle_btn.change( | |
# fn=get_top_images, | |
# inputs=[radio_choices, toggle_btn], | |
# outputs=[top_image_1, top_image_2, top_image_3], | |
# queue=True, | |
# ) | |
toggle_btn.change( | |
fn=show_activation_heatmap_clip, | |
inputs=[image_selector, radio_choices, toggle_btn], | |
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3], | |
queue=True, | |
) | |
# Launch the app | |
demo.launch() |