patchsae-demo / app.py
hyesulim's picture
fix: activation plot bug
45d706c verified
raw
history blame
19.5 kB
import gzip
import os
import pickle
from glob import glob
from time import sleep
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}
def preload_activation(image_name):
for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
with gzip.open(image_file, "rb") as f:
preloaded_data[model] = pickle.load(f)
def get_activation_distribution(image_name: str, model_type: str):
activation = get_data(image_name, model_type)[0]
noisy_features_indices = (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
activation[:, noisy_features_indices] = 0
return activation
def get_grid_loc(evt, image):
# Get click coordinates
x, y = evt._data["index"][0], evt._data["index"][1]
cell_width = image.width // GRID_NUM
cell_height = image.height // GRID_NUM
grid_x = x // cell_width
grid_y = y // cell_height
return grid_x, grid_y, cell_width, cell_height
def highlight_grid(evt: gr.EventData, image_name):
image = data_dict[image_name]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
highlighted_image = image.copy()
draw = ImageDraw.Draw(highlighted_image)
box = [grid_x * cell_width, grid_y * cell_height, (grid_x + 1) * cell_width, (grid_y + 1) * cell_height]
draw.rectangle(box, outline="red", width=3)
return highlighted_image
def load_image(img_name):
return Image.open(data_dict[img_name]["image_path"]).resize((IMAGE_SIZE, IMAGE_SIZE))
def plot_activations(
all_activation, tile_activations=None, grid_x=None, grid_y=None, top_k=5, colors=("blue", "cyan"), model_name="CLIP"
):
fig = go.Figure()
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
fig.add_trace(
go.Scatter(
x=np.arange(len(activations)),
y=activations,
mode="lines",
name=label,
line=dict(color=color, dash="solid"),
showlegend=True,
)
)
top_neurons = np.argsort(activations)[::-1][:top_k]
for idx in top_neurons:
fig.add_annotation(
x=idx,
y=activations[idx],
text=str(idx),
showarrow=True,
arrowhead=2,
ax=0,
ay=-15,
arrowcolor=color,
opacity=0.7,
)
return fig
label = f"{model_name.split('-')[-0]} Image-level"
fig = _add_scatter_with_annotation(fig, all_activation, model_name, colors[0], label)
if tile_activations is not None:
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
fig = _add_scatter_with_annotation(fig, tile_activations, model_name, colors[1], label)
fig.update_layout(
title="Activation Distribution",
xaxis_title="SAE latent index",
yaxis_title="Activation Value",
template="plotly_white",
)
fig.update_layout(legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5))
return fig
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
activation = get_activation_distribution(selected_image, model_name)
all_activation = activation.mean(0)
tile_activations = None
grid_x = None
grid_y = None
if evt is not None:
if evt._data is not None:
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = activation[token_idx]
fig = plot_activations(
all_activation, tile_activations, grid_x, grid_y, top_k=5, model_name=model_name, colors=colors
)
return fig
def plot_activation_distribution(evt: gr.EventData, selected_image: str, model_name: str):
fig = make_subplots(
rows=2,
cols=1,
shared_xaxes=True,
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
)
fig_clip = get_activations(evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef"))
fig_maple = get_activations(evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4"))
def _attach_fig(fig, sub_fig, row, col, yref):
for trace in sub_fig.data:
fig.add_trace(trace, row=row, col=col)
for annotation in sub_fig.layout.annotations:
annotation.update(yref=yref)
fig.add_annotation(annotation)
return fig
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
fig.update_layout(
# height=500,
# title="Activation Distributions",
template="plotly_white",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
margin=dict(l=20, r=20, t=40, b=20),
)
return fig
def get_segmask(selected_image, slider_value, model_type):
image = data_dict[selected_image]["image"]
sae_act = get_data(selected_image, model_type)[0]
temp = sae_act[:, slider_value]
try:
mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
except Exception as e:
print(sae_act.shape, slider_value)
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
base_opacity = 30
image_array = np.array(image)[..., :3]
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
rgba_overlay[..., :3] = image_array[..., :3]
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
rgba_overlay[..., 3] = 255 # Fully opaque
return rgba_overlay
def get_top_images(slider_value, toggle_btn):
def _get_images(dataset_path):
top_image_paths = [
os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
]
top_images = [
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
for path in top_image_paths
]
return top_images
if toggle_btn:
top_images = _get_images("./data/top_images_masked")
else:
top_images = _get_images("./data/top_images")
return top_images
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
top_images = get_top_images(slider_value, toggle_btn)
act_values = []
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
act_value = [str(round(value, 3)) for value in act_value]
act_value = " | ".join(act_value)
out = f"#### Activation values: {act_value}"
act_values.append(out)
return rgba_overlay, top_images, act_values
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
rgba_overlay, top_images, act_values = show_activation_heatmap(selected_image, slider_value, "CLIP", toggle_btn)
sleep(0.1)
return (rgba_overlay, top_images[0], top_images[1], top_images[2], act_values[0], act_values[1], act_values[2])
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
sleep(0.1)
return rgba_overlay
def get_init_radio_options(selected_image, model_name):
clip_neuron_dict = {}
maple_neuron_dict = {}
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
activations = get_activation_distribution(selected_image, model_name).mean(0)
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
return sorted_dict
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(selected_image, model_name, maple_neuron_dict)
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
return radio_choices
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
return out
def update_radio_options(evt: gr.EventData, selected_image, model_name):
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
all_activation = get_activation_distribution(selected_image, model_name)
image_activation = all_activation.mean(0)
_sort_and_save_top_k(image_activation, neuron_dict)
if evt is not None:
if evt._data is not None and isinstance(evt._data["index"], list):
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = all_activation[token_idx]
_sort_and_save_top_k(tile_activations, neuron_dict)
sorted_dict = dict(sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True))
return sorted_dict
clip_neuron_dict = {}
maple_neuron_dict = {}
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(evt, selected_image, model_name, maple_neuron_dict)
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
radio_choices = gr.Radio(choices=out, label="Top activating SAE latent", value=out[0])
sleep(0.1)
return radio_choices
def update_markdown(option_value):
latent_idx = int(option_value.split("-")[-1])
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
return out_1, out_2
def get_data(image_name, model_name):
pkl_root = "./data/out"
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
out = data
return out
def load_all_data(image_root, pkl_root):
image_files = glob(f"{image_root}/*")
data_dict = {}
for image_file in image_files:
image_name = os.path.basename(image_file).split(".")[0]
if image_file not in data_dict:
data_dict[image_name] = {
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
"image_path": image_file,
}
sae_data_dict = {}
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_acts"] = data
sae_data_dict["mean_act_values"] = {}
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_act_values"][dataset] = data
return data_dict, sae_data_dict
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
with gr.Row():
with gr.Column():
# Left View: Image selection and click handling
gr.Markdown("## Select input image and patch on the image")
image_selector = gr.Dropdown(choices=list(data_dict.keys()), value=default_image_name, label="Select Image")
image_display = gr.Image(value=data_dict[default_image_name]["image"], type="pil", interactive=True)
# Update image display when a new image is selected
image_selector.change(
fn=lambda img_name: data_dict[img_name]["image"], inputs=image_selector, outputs=image_display
)
image_display.select(fn=highlight_grid, inputs=[image_selector], outputs=[image_display])
with gr.Column():
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
model_selector = gr.Dropdown(
choices=model_options, value=model_options[0], label="Select adapted model (MaPLe)"
)
init_plot = plot_activation_distribution(None, default_image_name, model_options[0])
neuron_plot = gr.Plot(label="Neuron Activation", value=init_plot, show_label=False)
image_selector.change(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
image_display.select(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
model_selector.change(fn=load_image, inputs=[image_selector], outputs=image_display)
model_selector.change(
fn=plot_activation_distribution, inputs=[image_selector, model_selector], outputs=neuron_plot
)
with gr.Row():
with gr.Column():
radio_names = get_init_radio_options(default_image_name, model_options[0])
feautre_idx = radio_names[0].split("-")[-1]
markdown_display = gr.Markdown(f"## Segmentation mask for the selected SAE latent - {feautre_idx}")
init_seg, init_tops, init_values = show_activation_heatmap(default_image_name, radio_names[0], "CLIP")
gr.Markdown("### Localize SAE latent activation using CLIP")
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
init_seg_maple, _, _ = show_activation_heatmap(default_image_name, radio_names[0], model_options[0])
gr.Markdown("### Localize SAE latent activation using MaPLE")
seg_mask_display_maple = gr.Image(value=init_seg_maple, type="pil", show_label=False)
with gr.Column():
gr.Markdown("## Top activating SAE latent index")
radio_choices = gr.Radio(
choices=radio_names, label="Top activating SAE latent", interactive=True, value=radio_names[0]
)
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
markdown_display_2 = gr.Markdown(f"## Top reference images for the selected SAE latent - {feautre_idx}")
gr.Markdown("### ImageNet")
top_image_1 = gr.Image(value=init_tops[0], type="pil", label="ImageNet", show_label=False)
act_value_1 = gr.Markdown(init_values[0])
gr.Markdown("### ImageNet-Sketch")
top_image_2 = gr.Image(value=init_tops[1], type="pil", label="ImageNet-Sketch", show_label=False)
act_value_2 = gr.Markdown(init_values[1])
gr.Markdown("### Caltech101")
top_image_3 = gr.Image(value=init_tops[2], type="pil", label="Caltech101", show_label=False)
act_value_3 = gr.Markdown(init_values[2])
image_display.select(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
model_selector.change(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
image_selector.select(
fn=update_radio_options, inputs=[image_selector, model_selector], outputs=[radio_choices], queue=True
)
radio_choices.change(
fn=update_markdown,
inputs=[radio_choices],
outputs=[markdown_display, markdown_display_2],
queue=True,
)
radio_choices.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
queue=True,
)
radio_choices.change(
fn=show_activation_heatmap_maple,
inputs=[image_selector, radio_choices, model_selector],
outputs=[seg_mask_display_maple],
queue=True,
)
# toggle_btn.change(
# fn=get_top_images,
# inputs=[radio_choices, toggle_btn],
# outputs=[top_image_1, top_image_2, top_image_3],
# queue=True,
# )
toggle_btn.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[seg_mask_display, top_image_1, top_image_2, top_image_3, act_value_1, act_value_2, act_value_3],
queue=True,
)
# Launch the app
demo.launch()