dylanonfb
max token size updated
5d1d8a3
import os
import gradio as gr
from huggingface_hub import InferenceClient
import transformers
import torch
from google.cloud import translate_v2 as translate
# Load the credentials from the secret
credentials = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
# Write the credentials to a temporary file
credentials_path = "google_credentials.json"
with open(credentials_path, "w") as f:
f.write(credentials)
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path
def translate_text(source:str, target: str, text: str) -> dict:
"""Translates text into the target language.
Target must be an ISO 639-1 language code.
See https://g.co/cloud/translate/v2/translate-reference#supported_languages
"""
translate_client = translate.Client()
if isinstance(text, bytes):
text = text.decode("utf-8")
# Text can also be a sequence of strings, in which case this method
# will return a sequence of results for each text.
result = translate_client.translate(text, source_language=source,target_language=target)
# print(result)
# print("Text: {}".format(result["input"]))
# print("Translation: {}".format(result["translatedText"]))
# # print("Detected source language: {}".format(result["detectedSourceLanguage"]))
return result
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_id="chuanli11/Llama-3.2-3B-Instruct-uncensored"
client = InferenceClient(model_id)
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
def respond(
message,
history: list[tuple[str, str]],
system_message="You are a friendly Chatbot.",
max_tokens=512,
temperature=0.7,
top_p=0.95
):
print(f"Input...{message}")
tmp_english_out_text = translate_text("mni-Mtei","en",message)["translatedText"]
print(f"Translated to English...{tmp_english_out_text}")
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": translate_text("mni-Mtei","en",val[0])["translatedText"]})
if val[1]:
messages.append({"role": "assistant", "content": translate_text("mni-Mtei","en",val[1])["translatedText"]})
messages.append({"role": "user", "content": tmp_english_out_text})
response = ""
print(f"Running inference...{messages}")
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
print(f"Response...{response}")
print(f"Yield {translate_text('en','mni-Mtei',response)}")
yield translate_text("en","mni-Mtei",response)["translatedText"]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
demo = gr.ChatInterface(
respond
)
if __name__ == "__main__":
demo.launch()