Spaces:
Running
Running
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import transformers | |
import torch | |
from google.cloud import translate_v2 as translate | |
# Load the credentials from the secret | |
credentials = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") | |
# Write the credentials to a temporary file | |
credentials_path = "google_credentials.json" | |
with open(credentials_path, "w") as f: | |
f.write(credentials) | |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path | |
def translate_text(source:str, target: str, text: str) -> dict: | |
"""Translates text into the target language. | |
Target must be an ISO 639-1 language code. | |
See https://g.co/cloud/translate/v2/translate-reference#supported_languages | |
""" | |
translate_client = translate.Client() | |
if isinstance(text, bytes): | |
text = text.decode("utf-8") | |
# Text can also be a sequence of strings, in which case this method | |
# will return a sequence of results for each text. | |
result = translate_client.translate(text, source_language=source,target_language=target) | |
# print(result) | |
# print("Text: {}".format(result["input"])) | |
# print("Translation: {}".format(result["translatedText"])) | |
# # print("Detected source language: {}".format(result["detectedSourceLanguage"])) | |
return result | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
model_id="chuanli11/Llama-3.2-3B-Instruct-uncensored" | |
client = InferenceClient(model_id) | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model_id, | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device_map="auto", | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message="You are a friendly Chatbot.", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95 | |
): | |
print(f"Input...{message}") | |
tmp_english_out_text = translate_text("mni-Mtei","en",message)["translatedText"] | |
print(f"Translated to English...{tmp_english_out_text}") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": translate_text("mni-Mtei","en",val[0])["translatedText"]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": translate_text("mni-Mtei","en",val[1])["translatedText"]}) | |
messages.append({"role": "user", "content": tmp_english_out_text}) | |
response = "" | |
print(f"Running inference...{messages}") | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
print(f"Response...{response}") | |
print(f"Yield {translate_text('en','mni-Mtei',response)}") | |
yield translate_text("en","mni-Mtei",response)["translatedText"] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
demo = gr.ChatInterface( | |
respond | |
) | |
if __name__ == "__main__": | |
demo.launch() | |