Commit
·
b08909a
0
Parent(s):
Initial commit for text translation app
Browse files- Dockerfile +22 -0
- README.md +142 -0
- app.py +175 -0
- requirements.txt +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Choose an appropriate Python base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy the requirements file into the container
|
| 8 |
+
# Ensure this requirements.txt is in your GitHub repo and lists streamlit, requests, python-dotenv
|
| 9 |
+
COPY requirements.txt .
|
| 10 |
+
|
| 11 |
+
# Install Python dependencies
|
| 12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 13 |
+
|
| 14 |
+
# Copy your application code (app.py and any other needed files) into the container
|
| 15 |
+
COPY . .
|
| 16 |
+
|
| 17 |
+
# Expose the port Streamlit runs on (default is 8501)
|
| 18 |
+
EXPOSE 8501
|
| 19 |
+
|
| 20 |
+
# Command to run your Streamlit application
|
| 21 |
+
# Ensure HUGGING_FACE_API_TOKEN is set as a secret in your HF Space settings
|
| 22 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: HF Sentiment Analyzer
|
| 3 |
+
emoji: 🤗 # You can choose an emoji
|
| 4 |
+
colorFrom: blue # Or any color
|
| 5 |
+
colorTo: green # Or any color
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_file: app.py
|
| 8 |
+
# For Docker, you don't usually specify sdk_version directly here
|
| 9 |
+
# unless the template specifically requires it.
|
| 10 |
+
# If your Dockerfile handles Python/Streamlit versions, that's usually enough.
|
| 11 |
+
# If the Streamlit Docker Template implies a specific Dockerfile or setup,
|
| 12 |
+
# then 'sdk: docker' and 'app_file: app.py' are key.
|
| 13 |
+
# The template might also have set 'dockerfile: Dockerfile' if it expects one.
|
| 14 |
+
pinned: false
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# 🌍 Hugging Face Text Translation Tool
|
| 18 |
+
|
| 19 |
+
An interactive web application that translates text into various languages using Hugging Face's state-of-the-art translation models via the Inference API. This project is part of a 4-week AI project portfolio building challenge.
|
| 20 |
+
|
| 21 |
+
**Live Demo:** [Link to your Deployed App on Hugging Face Spaces]
|
| 22 |
+
|
| 23 |
+
**Project Repository:** `https://github.com/dylangamachefl/hf-text-translator` (Or your actual repo name)
|
| 24 |
+
|
| 25 |
+

|
| 26 |
+
*(Replace `translator-screenshot.png` with the actual path/name if different, or embed the image directly if preferred by dragging it into the GitHub text editor for the README)*
|
| 27 |
+
|
| 28 |
+
## 📖 Overview
|
| 29 |
+
|
| 30 |
+
This application provides a simple and intuitive interface for users to:
|
| 31 |
+
1. Input text they wish to translate.
|
| 32 |
+
2. Select a target language from a predefined list.
|
| 33 |
+
3. Receive the translated text, processed by powerful models hosted on Hugging Face.
|
| 34 |
+
|
| 35 |
+
The primary goal is to demonstrate the ability to integrate with external AI services (Hugging Face Inference API) and build a functional NLP application with a user-friendly UI.
|
| 36 |
+
|
| 37 |
+
## 🎯 Problem Solved
|
| 38 |
+
|
| 39 |
+
In an increasingly globalized world, language barriers can hinder communication and access to information. This tool offers a quick and accessible way to translate text, helping to bridge these gaps. It showcases how pre-trained AI models can be leveraged to build practical solutions for common language-related tasks.
|
| 40 |
+
|
| 41 |
+
## ✨ Skills Showcased
|
| 42 |
+
|
| 43 |
+
* **AI/ML Implementation:** Utilizing pre-trained NLP models for a specific task (translation).
|
| 44 |
+
* **Python:** Core programming language for backend logic and API interaction.
|
| 45 |
+
* **ML Libraries (Conceptual):** Understanding the role and use of Hugging Face Transformers (even if used via API).
|
| 46 |
+
* **API Integration:** Connecting to and consuming the Hugging Face Inference API.
|
| 47 |
+
* **Data Handling:** Sending text data to the API and parsing JSON responses.
|
| 48 |
+
* **NLP (using APIs):** Practical application of Natural Language Processing for translation.
|
| 49 |
+
* **Web Development (UI):** Building an interactive user interface with Streamlit.
|
| 50 |
+
* **Environment Management:** Use of `.env` for API keys.
|
| 51 |
+
* **Version Control:** Git and GitHub for project management.
|
| 52 |
+
* **Deployment:** Deploying the application to Hugging Face Spaces.
|
| 53 |
+
* **Documentation:** Creating clear and concise project documentation (this README).
|
| 54 |
+
|
| 55 |
+
## 🛠️ How It Works
|
| 56 |
+
|
| 57 |
+
1. **User Input:** The user types or pastes the text they want to translate into a text area.
|
| 58 |
+
2. **Language Selection:** The user selects the desired target language from a dropdown menu. Each language option is mapped to a specific Hugging Face translation model ID (primarily from the Helsinki-NLP group, e.g., `Helsinki-NLP/opus-mt-en-es` for English to Spanish).
|
| 59 |
+
3. **API Call:** When the "Translate" button is clicked:
|
| 60 |
+
* The Python backend (using the `requests` library) constructs a POST request to the Hugging Face Inference API endpoint for the selected model.
|
| 61 |
+
* The input text is sent in the JSON payload.
|
| 62 |
+
* The Hugging Face API token (loaded securely from environment variables) is included in the request headers for authentication.
|
| 63 |
+
4. **Processing:** The Hugging Face infrastructure runs the inference on the chosen translation model.
|
| 64 |
+
5. **Response Handling:** The application receives the API's JSON response, which contains the translated text (typically within a list and dictionary structure like `[{'translation_text': '...'}]`).
|
| 65 |
+
6. **Display Output:** The translated text is extracted from the response and displayed to the user in the Streamlit interface. Error handling is implemented to manage API issues or unexpected responses.
|
| 66 |
+
|
| 67 |
+
## 💻 Technologies Used
|
| 68 |
+
|
| 69 |
+
* **Programming Language:** Python 3.x
|
| 70 |
+
* **AI Models/API:**
|
| 71 |
+
* Hugging Face Hub
|
| 72 |
+
* Hugging Face Inference API (Free Tier)
|
| 73 |
+
* Helsinki-NLP Translation Models (e.g., `opus-mt-*`)
|
| 74 |
+
* **Python Libraries:**
|
| 75 |
+
* `streamlit`: For building the web application UI.
|
| 76 |
+
* `requests`: For making HTTP requests to the Hugging Face API.
|
| 77 |
+
* `python-dotenv`: For managing environment variables (like the API token) locally.
|
| 78 |
+
* **Version Control:** Git & GitHub
|
| 79 |
+
* **Deployment:** Hugging Face Spaces
|
| 80 |
+
* **Development Environment:** Visual Studio Code (or your preferred IDE), Python Virtual Environment (`venv`)
|
| 81 |
+
|
| 82 |
+
## 🚀 Setup and Local Development
|
| 83 |
+
|
| 84 |
+
To run this project locally, follow these steps:
|
| 85 |
+
|
| 86 |
+
1. **Clone the repository:**
|
| 87 |
+
```bash
|
| 88 |
+
git clone https://github.com/[Your GitHub Username]/hf-text-translator.git
|
| 89 |
+
cd hf-text-translator
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
2. **Set up a Python virtual environment:**
|
| 93 |
+
(Assuming you have a shared `venv` in a parent `ai-portfolio` directory as per the overall plan)
|
| 94 |
+
```bash
|
| 95 |
+
# From within hf-text-translator directory:
|
| 96 |
+
# For macOS/Linux:
|
| 97 |
+
source ../venv/bin/activate
|
| 98 |
+
# For Windows (Git Bash or PowerShell):
|
| 99 |
+
# source ../venv/Scripts/activate
|
| 100 |
+
# For Windows (Command Prompt):
|
| 101 |
+
# ..\venv\Scripts\activate
|
| 102 |
+
```
|
| 103 |
+
If you don't have the shared venv or prefer a dedicated one for this project:
|
| 104 |
+
```bash
|
| 105 |
+
python -m venv venv
|
| 106 |
+
# Activate it:
|
| 107 |
+
# macOS/Linux: source venv/bin/activate
|
| 108 |
+
# Windows: venv\Scripts\activate
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
3. **Install dependencies:**
|
| 112 |
+
```bash
|
| 113 |
+
pip install -r requirements.txt
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
4. **Set up your Hugging Face API Token:**
|
| 117 |
+
* Create a `.env` file in the root of your main `ai-portfolio` project directory (i.e., one level above this `hf-text-translator` project).
|
| 118 |
+
* Add your Hugging Face API token to the `.env` file:
|
| 119 |
+
```
|
| 120 |
+
HUGGING_FACE_API_TOKEN="your_hf_api_token_here"
|
| 121 |
+
```
|
| 122 |
+
* *Note: The `app.py` is configured to look for `.env` in the parent directory. If your `.env` file is elsewhere, you might need to adjust the `load_dotenv()` path in `app.py`.*
|
| 123 |
+
|
| 124 |
+
5. **Run the Streamlit application:**
|
| 125 |
+
```bash
|
| 126 |
+
streamlit run app.py
|
| 127 |
+
```
|
| 128 |
+
The application should open in your web browser.
|
| 129 |
+
|
| 130 |
+
## 🔮 Future Enhancements (Optional)
|
| 131 |
+
|
| 132 |
+
* **Auto-detect source language:** Implement a feature to automatically detect the language of the input text.
|
| 133 |
+
* **Support more languages:** Expand the list of available target languages by adding more Helsinki-NLP models.
|
| 134 |
+
* **Batch translation:** Allow users to upload a file for translating multiple pieces of text.
|
| 135 |
+
* **Improved UI/UX:** Further refine the user interface for better aesthetics and usability.
|
| 136 |
+
|
| 137 |
+
## 🙏 Acknowledgements
|
| 138 |
+
|
| 139 |
+
* The Hugging Face team for their incredible models, Inference API, and Spaces platform.
|
| 140 |
+
* The developers of Streamlit for making web app creation in Python so accessible.
|
| 141 |
+
|
| 142 |
+
---
|
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
import os
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
# --- Configuration ---
|
| 7 |
+
# Attempt to load .env file.
|
| 8 |
+
# Assumes .env is in the parent directory of this script's location (e.g., ../.env)
|
| 9 |
+
# If your app.py is in the root of your project (where .env also is),
|
| 10 |
+
# load_dotenv() without arguments might work.
|
| 11 |
+
# For Hugging Face Spaces, you'll set secrets directly in the Space settings.
|
| 12 |
+
dotenv_path = os.path.join(
|
| 13 |
+
os.path.dirname(__file__), "..", ".env"
|
| 14 |
+
) # Path to .env in parent directory
|
| 15 |
+
if os.path.exists(dotenv_path):
|
| 16 |
+
load_dotenv(dotenv_path=dotenv_path)
|
| 17 |
+
else:
|
| 18 |
+
# Fallback if .env is in the current directory (less likely for multi-project setup)
|
| 19 |
+
load_dotenv()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
API_TOKEN = os.getenv("HUGGING_FACE_API_TOKEN")
|
| 23 |
+
API_URL_BASE = "https://api-inference.huggingface.co/models/"
|
| 24 |
+
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 25 |
+
|
| 26 |
+
# Define available models (user-friendly name: model_id)
|
| 27 |
+
# You can find more models at https://huggingface.co/models?pipeline_tag=translation
|
| 28 |
+
# Filter by source language and target language.
|
| 29 |
+
TRANSLATION_MODELS = {
|
| 30 |
+
"English to Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 31 |
+
"English to French": "Helsinki-NLP/opus-mt-en-fr",
|
| 32 |
+
"English to German": "Helsinki-NLP/opus-mt-en-de",
|
| 33 |
+
"English to Chinese (Simplified)": "Helsinki-NLP/opus-mt-en-zh",
|
| 34 |
+
"English to Japanese": "Helsinki-NLP/opus-mt-en-jap", # Check model hub for exact ID if this doesn't work
|
| 35 |
+
"Spanish to English": "Helsinki-NLP/opus-mt-es-en",
|
| 36 |
+
"French to English": "Helsinki-NLP/opus-mt-fr-en",
|
| 37 |
+
# Add more models/languages as desired
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# --- Hugging Face API Call Function ---
|
| 42 |
+
def query_translation(text_to_translate, model_id):
|
| 43 |
+
"""
|
| 44 |
+
Sends a request to the Hugging Face Inference API for translation.
|
| 45 |
+
"""
|
| 46 |
+
if not API_TOKEN: # Check if token was loaded
|
| 47 |
+
st.error(
|
| 48 |
+
"Hugging Face API Token not found. Please configure it in your .env file or Space secrets."
|
| 49 |
+
)
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
api_url = API_URL_BASE + model_id
|
| 53 |
+
payload = {"inputs": text_to_translate}
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
response = requests.post(
|
| 57 |
+
api_url, headers=HEADERS, json=payload, timeout=30
|
| 58 |
+
) # Added timeout
|
| 59 |
+
response.raise_for_status() # Raises an HTTPError for bad responses (4XX or 5XX)
|
| 60 |
+
return response.json()
|
| 61 |
+
except requests.exceptions.HTTPError as errh:
|
| 62 |
+
st.error(f"Translation API HTTP Error: {errh}")
|
| 63 |
+
error_details = "No additional details from API."
|
| 64 |
+
try:
|
| 65 |
+
error_details = response.json().get("error", response.text)
|
| 66 |
+
except ValueError: # If response.text is not JSON
|
| 67 |
+
error_details = response.text
|
| 68 |
+
st.info(f"Details: {error_details}")
|
| 69 |
+
return None
|
| 70 |
+
except requests.exceptions.ConnectionError as errc:
|
| 71 |
+
st.error(f"Translation API Connection Error: {errc}")
|
| 72 |
+
return None
|
| 73 |
+
except requests.exceptions.Timeout as errt:
|
| 74 |
+
st.error(f"Translation API Timeout Error: {errt}")
|
| 75 |
+
return None
|
| 76 |
+
except requests.exceptions.RequestException as err:
|
| 77 |
+
st.error(f"Translation API Request Error: {err}")
|
| 78 |
+
return None
|
| 79 |
+
except (
|
| 80 |
+
ValueError
|
| 81 |
+
): # If response is not JSON (should be caught by response.json() above but good to have)
|
| 82 |
+
st.error("Error: Received non-JSON response from translation API.")
|
| 83 |
+
st.info(
|
| 84 |
+
f"Raw Response: {response.text if 'response' in locals() else 'No response object'}"
|
| 85 |
+
)
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# --- Streamlit UI ---
|
| 90 |
+
st.set_page_config(page_title="🌍 Text Translator", layout="wide")
|
| 91 |
+
|
| 92 |
+
st.title("🌍 Text Translation Tool")
|
| 93 |
+
st.markdown(
|
| 94 |
+
"Translate text into various languages using Hugging Face's Inference API. "
|
| 95 |
+
"This app demonstrates API integration for NLP tasks."
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Check for API token at the beginning of UI rendering
|
| 99 |
+
if not API_TOKEN:
|
| 100 |
+
st.error("Hugging Face API Token not configured. The application cannot function.")
|
| 101 |
+
st.markdown(
|
| 102 |
+
"Please ensure your `HUGGING_FACE_API_TOKEN` is set in a `.env` file "
|
| 103 |
+
"in the root of your `ai-portfolio` project or as a secret if deploying on Hugging Face Spaces."
|
| 104 |
+
)
|
| 105 |
+
st.stop() # Stop further execution of the script if token is missing
|
| 106 |
+
|
| 107 |
+
# Layout columns
|
| 108 |
+
col1, col2 = st.columns([2, 1]) # Text area takes 2/3, selectbox takes 1/3
|
| 109 |
+
|
| 110 |
+
with col1:
|
| 111 |
+
text_input = st.text_area(
|
| 112 |
+
"Enter text to translate:",
|
| 113 |
+
height=200,
|
| 114 |
+
key="text_input_translate",
|
| 115 |
+
placeholder="Type or paste your text here...",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
with col2:
|
| 119 |
+
selected_language_name = st.selectbox(
|
| 120 |
+
"Select target language:",
|
| 121 |
+
options=list(TRANSLATION_MODELS.keys()),
|
| 122 |
+
index=0, # Default to the first language in the list
|
| 123 |
+
key="lang_select",
|
| 124 |
+
)
|
| 125 |
+
model_id_to_use = TRANSLATION_MODELS[selected_language_name]
|
| 126 |
+
st.caption(f"Using model: `{model_id_to_use}`")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
if st.button("Translate Text", key="translate_button", type="primary"):
|
| 130 |
+
if text_input:
|
| 131 |
+
if not API_TOKEN: # Redundant check, but good for safety
|
| 132 |
+
st.error("API Token is missing. Cannot proceed.")
|
| 133 |
+
else:
|
| 134 |
+
with st.spinner(f"Translating to {selected_language_name}... Please wait."):
|
| 135 |
+
translation_result = query_translation(text_input, model_id_to_use)
|
| 136 |
+
|
| 137 |
+
if translation_result:
|
| 138 |
+
# The API returns a list with a dictionary inside
|
| 139 |
+
if (
|
| 140 |
+
isinstance(translation_result, list)
|
| 141 |
+
and len(translation_result) > 0
|
| 142 |
+
and "translation_text" in translation_result[0]
|
| 143 |
+
):
|
| 144 |
+
translated_text = translation_result[0]["translation_text"]
|
| 145 |
+
st.subheader("📜 Translation:")
|
| 146 |
+
st.success(translated_text)
|
| 147 |
+
# Sometimes the API might return a dictionary directly with an error
|
| 148 |
+
elif isinstance(translation_result, dict) and translation_result.get(
|
| 149 |
+
"error"
|
| 150 |
+
):
|
| 151 |
+
# Error is already displayed by the query_translation function
|
| 152 |
+
st.warning("Translation failed. See error message above.")
|
| 153 |
+
else:
|
| 154 |
+
st.error(
|
| 155 |
+
"Translation failed or the API returned an unexpected format."
|
| 156 |
+
)
|
| 157 |
+
st.json(translation_result) # Show the raw response for debugging
|
| 158 |
+
# If translation_result is None, query_translation already showed an error
|
| 159 |
+
else:
|
| 160 |
+
st.warning("Please enter some text to translate.")
|
| 161 |
+
|
| 162 |
+
st.divider()
|
| 163 |
+
st.sidebar.header("ℹ️ About This App")
|
| 164 |
+
st.sidebar.info(
|
| 165 |
+
"This tool demonstrates the use of the Hugging Face Inference API "
|
| 166 |
+
"for text translation. It allows users to input text and select a target "
|
| 167 |
+
"language, then displays the translated output."
|
| 168 |
+
"\n\n**Key Skills Showcased:**"
|
| 169 |
+
"\n- Python & Streamlit for UI"
|
| 170 |
+
"\n- Hugging Face API Integration"
|
| 171 |
+
"\n- Handling API responses & errors"
|
| 172 |
+
"\n- Basic NLP application"
|
| 173 |
+
)
|
| 174 |
+
st.sidebar.markdown("---")
|
| 175 |
+
st.sidebar.markdown("Project for **AI Project Portfolio (4 Weeks)**")
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
requests
|
| 3 |
+
python-dotenv
|