Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,55 +13,52 @@ openai.api_key = os.environ.get('OPENAI_API_KEY')
|
|
13 |
airtable_api_key = os.environ.get('AIRTABLE_API_KEY')
|
14 |
|
15 |
# Airtable table names
|
16 |
-
|
17 |
prompts_table_name = 'tblYIZEB8m6JkGDEP'
|
18 |
qalog_table_name = 'tbl4oNgFPWM5xH1XO'
|
19 |
examples_table_name = 'tblu7sraOEmRgEGkp'
|
20 |
users_table_name = 'tblLNe5ZL47SvrAEk'
|
21 |
user_log_table_name = 'tblrlTsRrkl6BqMAJ'
|
|
|
|
|
|
|
22 |
|
23 |
# Define the style and content for the response field
|
24 |
-
label_text = "
|
25 |
color = "#6562F4"
|
26 |
background_color = "white"
|
27 |
border_radius = "10px"
|
28 |
response_label = f'<h3 style="color: {color}; background-color: {background_color}; border-radius: {border_radius}; padding: 10px;display: inline-block;">{label_text}</h3>'
|
29 |
|
30 |
-
#Airtable Base ID
|
31 |
base_id = 'appcUK3hUWC7GM2Kb'
|
32 |
|
33 |
-
#Name of the prompt temlate record
|
34 |
-
prompt_name = "NILI_v1"
|
35 |
-
|
36 |
#App name for user login logging
|
37 |
-
app="
|
38 |
|
39 |
-
#Header for the Airtable requests
|
40 |
headers = {
|
41 |
"Authorization": f"Bearer {airtable_api_key}",
|
42 |
"Content-Type": "application/json",
|
43 |
"Accept": "application/json",
|
44 |
}
|
45 |
|
46 |
-
|
47 |
def prompt_trim(prompt: str) -> str:
|
48 |
lines = prompt.split('\n')
|
49 |
trimmed = '\n'.join([l.strip() for l in lines])
|
50 |
return trimmed
|
51 |
|
52 |
-
#Get the policies for the selected schools and concatenate them.
|
53 |
-
def get_policies(school_selection):
|
54 |
|
55 |
-
|
|
|
56 |
|
57 |
# Parameters for the API request to filter by 'school' field and retrieve 'policy_text'
|
58 |
params = {
|
59 |
-
'filterByFormula': "OR({})".format(','.join(["
|
60 |
-
'fields[]': '
|
61 |
}
|
62 |
|
63 |
# Initialize an empty string to store concatenated policies
|
64 |
-
|
65 |
|
66 |
#print(params)
|
67 |
|
@@ -76,29 +73,24 @@ def get_policies(school_selection):
|
|
76 |
|
77 |
# Check if there are records in the response
|
78 |
if data.get('records'):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
if concatenated_policies:
|
84 |
-
concatenated_policies += "\n----------\n"
|
85 |
-
concatenated_policies += policy_text
|
86 |
|
87 |
else:
|
88 |
-
print("No records found in the '
|
89 |
else:
|
90 |
-
print(f"Failed to retrieve data. Status code: {response.status_code}")
|
91 |
except Exception as e:
|
92 |
print(f"An error occurred: {str(e)}")
|
93 |
|
94 |
-
|
95 |
|
96 |
-
return concatenated_policies
|
97 |
|
98 |
-
#Get a list of School Name from the policies for the UI dropdown
|
99 |
def get_schools():
|
100 |
|
101 |
-
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{
|
102 |
|
103 |
# Parameters for the API request to select only the 'school' field
|
104 |
params = {
|
@@ -123,22 +115,61 @@ def get_schools():
|
|
123 |
# Extract the 'school' values from each record
|
124 |
schools = [record['fields']['school'] for record in data['records']]
|
125 |
|
|
|
|
|
126 |
else:
|
127 |
print("No records found in the 'policies' table.")
|
128 |
else:
|
129 |
-
print(f"Failed to retrieve data. Status code: {response.status_code}")
|
130 |
except Exception as e:
|
131 |
print(f"An error occurred: {str(e)}")
|
132 |
|
133 |
return schools
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def get_prompt(header, template_content):
|
137 |
|
138 |
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}'
|
139 |
|
140 |
params = {
|
141 |
-
'filterByFormula': "prompt_name='
|
142 |
}
|
143 |
|
144 |
response = requests.get(airtable_endpoint, headers=headers, params=params)
|
@@ -178,16 +209,19 @@ def get_examples():
|
|
178 |
#print(ui_examples)
|
179 |
|
180 |
|
181 |
-
def
|
182 |
|
183 |
-
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{
|
184 |
|
185 |
# Organize data for Airtable
|
186 |
new_fields = {
|
187 |
-
'your_role': str(your_role),
|
188 |
'school_selection': str(school_selection),
|
|
|
|
|
|
|
|
|
|
|
189 |
'output_format': str(output_format),
|
190 |
-
'input_text': str(input_text),
|
191 |
'gpt_response': str(gpt_response),
|
192 |
'response_time': str(response_time),
|
193 |
'question_cost': question_cost,
|
@@ -200,9 +234,12 @@ def append_to_at_qalog(your_role, school_selection, output_format, input_text, g
|
|
200 |
'fields': new_fields
|
201 |
}
|
202 |
try:
|
|
|
203 |
# Post data to Airtable
|
204 |
response = requests.post(airtable_endpoint, headers=headers, json=data)
|
205 |
|
|
|
|
|
206 |
# Check for errors
|
207 |
response.raise_for_status()
|
208 |
|
@@ -216,16 +253,11 @@ def append_to_at_qalog(your_role, school_selection, output_format, input_text, g
|
|
216 |
|
217 |
|
218 |
#Chatbot Function
|
219 |
-
def chatbot(
|
220 |
|
221 |
start_time = datetime.datetime.now()
|
222 |
|
223 |
-
|
224 |
-
#print(school_selection)
|
225 |
-
|
226 |
-
# Read the Hydrated policies
|
227 |
-
|
228 |
-
policies = get_policies(school_selection)
|
229 |
|
230 |
template_content = ''
|
231 |
header = ''
|
@@ -235,20 +267,14 @@ def chatbot(your_role,school_selection,output_format,input_text):
|
|
235 |
#print(header)
|
236 |
#print(template_content)
|
237 |
|
238 |
-
header_template = Template(header)
|
239 |
-
merged_header = header_template.render(your_role=your_role)
|
240 |
-
|
241 |
# Create a Jinja2 template from the content
|
242 |
template = Template(template_content)
|
243 |
|
244 |
-
# Render the template with the
|
245 |
-
analysis_input = template.render(
|
246 |
|
247 |
trimmed_input = prompt_trim(analysis_input)
|
248 |
|
249 |
-
with open('analysis_input.txt', 'w', encoding='utf-8') as out_file:
|
250 |
-
out_file.write(trimmed_input)
|
251 |
-
|
252 |
response = openai.ChatCompletion.create(
|
253 |
model="gpt-4",
|
254 |
#model="gpt-3.5-turbo",
|
@@ -256,7 +282,7 @@ def chatbot(your_role,school_selection,output_format,input_text):
|
|
256 |
messages=[
|
257 |
{
|
258 |
"role": "system",
|
259 |
-
"content":
|
260 |
},
|
261 |
{
|
262 |
"role": "user",
|
@@ -273,14 +299,15 @@ def chatbot(your_role,school_selection,output_format,input_text):
|
|
273 |
prompt_tokens = tokens_used.get('prompt_tokens',)
|
274 |
completion_tokens = tokens_used.get('completion_tokens', 0)
|
275 |
|
276 |
-
"""
|
277 |
-
with open('response.txt', 'w', encoding='utf-8') as out_file:
|
278 |
-
out_file.write(gpt_response)
|
279 |
-
"""
|
280 |
end_time = datetime.datetime.now()
|
|
|
281 |
response_time = end_time - start_time
|
282 |
|
283 |
-
|
|
|
|
|
|
|
|
|
284 |
|
285 |
return response_label,gpt_response
|
286 |
|
@@ -297,14 +324,14 @@ def log_login(username):
|
|
297 |
data = {
|
298 |
'fields': new_fields
|
299 |
}
|
300 |
-
|
301 |
try:
|
302 |
-
# Post data to Airtable
|
303 |
-
response = requests.post(airtable_endpoint, headers=headers, json=data)
|
304 |
|
305 |
-
|
306 |
-
|
307 |
|
|
|
|
|
|
|
308 |
except requests.exceptions.HTTPError as http_error:
|
309 |
# Handle the HTTP error (e.g., log it or display an error message)
|
310 |
print(f"HTTP error occurred: {http_error}")
|
@@ -313,7 +340,6 @@ def log_login(username):
|
|
313 |
# Handle exceptions, log errors, or raise them as needed
|
314 |
print(f"An error occurred: {str(e)}")
|
315 |
|
316 |
-
|
317 |
def login_auth(username, password):
|
318 |
|
319 |
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{users_table_name}'
|
@@ -327,13 +353,9 @@ def login_auth(username, password):
|
|
327 |
|
328 |
if response.status_code == 200:
|
329 |
data = response.json()
|
330 |
-
#If the matching user/password record is found:
|
331 |
if data.get('records'):
|
332 |
|
333 |
-
#Log that the user logged in
|
334 |
log_login(username)
|
335 |
-
|
336 |
-
#Set the global logged_in_user variable. This used in the append_to_at_qalog function to track what user asked the question
|
337 |
global logged_in_user
|
338 |
logged_in_user = username
|
339 |
|
@@ -351,6 +373,7 @@ ui_examples = []
|
|
351 |
school_selection = []
|
352 |
|
353 |
schools = get_schools()
|
|
|
354 |
|
355 |
get_examples()
|
356 |
|
@@ -361,31 +384,31 @@ with gr.Blocks(CIMStheme) as iface:
|
|
361 |
with gr.Column(scale=2):
|
362 |
gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False)
|
363 |
with gr.Column(scale=2):
|
364 |
-
|
365 |
-
gr.Markdown(value="# NILI - Powered by CIMS.AI")
|
366 |
with gr.Column(scale=2):
|
367 |
gr.Markdown("")
|
368 |
with gr.Row():
|
369 |
with gr.Column():
|
370 |
gr.Interface(fn=chatbot,
|
371 |
inputs=[
|
372 |
-
gr.components.Dropdown(
|
373 |
-
gr.components.Dropdown(
|
|
|
|
|
|
|
374 |
gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"),
|
375 |
-
|
376 |
outputs=[
|
377 |
gr.components.Markdown(response_label),
|
378 |
-
gr.components.HTML(label="
|
379 |
],
|
380 |
-
description="
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
flagging_options=["The response is incorrect","The response is inappropriate","The response doesn't make sense"]
|
385 |
-
)
|
386 |
with gr.Row():
|
387 |
with gr.Column():
|
388 |
gr.HTML('<center><i>CIMS.AI Confidential 2023</i></center>')
|
389 |
|
390 |
-
iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'")
|
391 |
-
#iface.launch(
|
|
|
13 |
airtable_api_key = os.environ.get('AIRTABLE_API_KEY')
|
14 |
|
15 |
# Airtable table names
|
16 |
+
schools_table_name = 'tblFh7tguTjbjWms7'
|
17 |
prompts_table_name = 'tblYIZEB8m6JkGDEP'
|
18 |
qalog_table_name = 'tbl4oNgFPWM5xH1XO'
|
19 |
examples_table_name = 'tblu7sraOEmRgEGkp'
|
20 |
users_table_name = 'tblLNe5ZL47SvrAEk'
|
21 |
user_log_table_name = 'tblrlTsRrkl6BqMAJ'
|
22 |
+
students_table_name = 'tbl9h106z0Jg34DQX'
|
23 |
+
scoutlog_table_name = 'tblF30p0krA1FwOiD'
|
24 |
+
sports_table_name = 'tbler8HTzD0Jm8Woi'
|
25 |
|
26 |
# Define the style and content for the response field
|
27 |
+
label_text = "Scout Response"
|
28 |
color = "#6562F4"
|
29 |
background_color = "white"
|
30 |
border_radius = "10px"
|
31 |
response_label = f'<h3 style="color: {color}; background-color: {background_color}; border-radius: {border_radius}; padding: 10px;display: inline-block;">{label_text}</h3>'
|
32 |
|
|
|
33 |
base_id = 'appcUK3hUWC7GM2Kb'
|
34 |
|
|
|
|
|
|
|
35 |
#App name for user login logging
|
36 |
+
app="Scout"
|
37 |
|
|
|
38 |
headers = {
|
39 |
"Authorization": f"Bearer {airtable_api_key}",
|
40 |
"Content-Type": "application/json",
|
41 |
"Accept": "application/json",
|
42 |
}
|
43 |
|
44 |
+
|
45 |
def prompt_trim(prompt: str) -> str:
|
46 |
lines = prompt.split('\n')
|
47 |
trimmed = '\n'.join([l.strip() for l in lines])
|
48 |
return trimmed
|
49 |
|
|
|
|
|
50 |
|
51 |
+
def get_students(school_selection):
|
52 |
+
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{students_table_name}'
|
53 |
|
54 |
# Parameters for the API request to filter by 'school' field and retrieve 'policy_text'
|
55 |
params = {
|
56 |
+
'filterByFormula': "OR({})".format(','.join(["School='{}'".format(school) for school in school_selection])),
|
57 |
+
'fields[]': ['Athlete_Name','Primary_Sport','Position','Facebook_Fans','Twitter_Fans','Instagram_Fans','Interests','Ethnicity','Gender'],
|
58 |
}
|
59 |
|
60 |
# Initialize an empty string to store concatenated policies
|
61 |
+
students = ''
|
62 |
|
63 |
#print(params)
|
64 |
|
|
|
73 |
|
74 |
# Check if there are records in the response
|
75 |
if data.get('records'):
|
76 |
+
|
77 |
+
cleaned_data = [{'fields': entry['fields']} for entry in data.get('records')]
|
78 |
+
|
79 |
+
students = json.dumps(cleaned_data, indent=4)
|
|
|
|
|
|
|
80 |
|
81 |
else:
|
82 |
+
print("No records found in the 'students' table for the selected schools.")
|
83 |
else:
|
84 |
+
print(f"Failed to retrieve students data. Status code: {response.status_code}")
|
85 |
except Exception as e:
|
86 |
print(f"An error occurred: {str(e)}")
|
87 |
|
88 |
+
return students
|
89 |
|
|
|
90 |
|
|
|
91 |
def get_schools():
|
92 |
|
93 |
+
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{schools_table_name}'
|
94 |
|
95 |
# Parameters for the API request to select only the 'school' field
|
96 |
params = {
|
|
|
115 |
# Extract the 'school' values from each record
|
116 |
schools = [record['fields']['school'] for record in data['records']]
|
117 |
|
118 |
+
# Print the list of 'school' values
|
119 |
+
# print(schools)
|
120 |
else:
|
121 |
print("No records found in the 'policies' table.")
|
122 |
else:
|
123 |
+
print(f"Failed to retrieve school data. Status code: {response.status_code}")
|
124 |
except Exception as e:
|
125 |
print(f"An error occurred: {str(e)}")
|
126 |
|
127 |
return schools
|
128 |
|
129 |
+
def get_sports ():
|
130 |
+
|
131 |
+
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{sports_table_name}'
|
132 |
+
|
133 |
+
# Parameters for the API request to select only the 'school' field
|
134 |
+
params = {
|
135 |
+
'fields[]': 'sport', # Replace with the name of your field
|
136 |
+
'sort[0][field]': 'sport', # Sort by the 'school' field
|
137 |
+
'sort[0][direction]': 'asc', # Sort in ascending order
|
138 |
+
}
|
139 |
+
|
140 |
+
schools = ''
|
141 |
+
|
142 |
+
try:
|
143 |
+
# Send a GET request to the Airtable API
|
144 |
+
response = requests.get(airtable_endpoint, headers=headers, params=params)
|
145 |
+
|
146 |
+
# Check if the request was successful (status code 200)
|
147 |
+
if response.status_code == 200:
|
148 |
+
# Parse the JSON response
|
149 |
+
data = response.json()
|
150 |
+
|
151 |
+
# Check if there are records in the response
|
152 |
+
if data.get('records'):
|
153 |
+
# Extract the 'school' values from each record
|
154 |
+
sports = [record['fields']['sport'] for record in data['records']]
|
155 |
+
|
156 |
+
# Print the list of 'school' values
|
157 |
+
# print(sports)
|
158 |
+
else:
|
159 |
+
print("No records found in the 'policies' table.")
|
160 |
+
else:
|
161 |
+
print(f"Failed to retrieve school data. Status code: {response.status_code}")
|
162 |
+
except Exception as e:
|
163 |
+
print(f"An error occurred: {str(e)}")
|
164 |
+
|
165 |
+
return sports
|
166 |
+
|
167 |
def get_prompt(header, template_content):
|
168 |
|
169 |
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}'
|
170 |
|
171 |
params = {
|
172 |
+
'filterByFormula': "prompt_name='Scout_v1'",
|
173 |
}
|
174 |
|
175 |
response = requests.get(airtable_endpoint, headers=headers, params=params)
|
|
|
209 |
#print(ui_examples)
|
210 |
|
211 |
|
212 |
+
def append_to_at_scountlog(school_selection, output_format, gender,interests,sports,gpt_response,number_of_athletes,social_media_channel,response_time,question_cost,prompt_tokens,completion_tokens):
|
213 |
|
214 |
+
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{scoutlog_table_name}'
|
215 |
|
216 |
# Organize data for Airtable
|
217 |
new_fields = {
|
|
|
218 |
'school_selection': str(school_selection),
|
219 |
+
'gender': str(gender),
|
220 |
+
'social_media_channel': str(social_media_channel),
|
221 |
+
'sports': str(sports),
|
222 |
+
'interests': str(interests),
|
223 |
+
'number_of_athletes': int(number_of_athletes),
|
224 |
'output_format': str(output_format),
|
|
|
225 |
'gpt_response': str(gpt_response),
|
226 |
'response_time': str(response_time),
|
227 |
'question_cost': question_cost,
|
|
|
234 |
'fields': new_fields
|
235 |
}
|
236 |
try:
|
237 |
+
|
238 |
# Post data to Airtable
|
239 |
response = requests.post(airtable_endpoint, headers=headers, json=data)
|
240 |
|
241 |
+
#print(response.json())
|
242 |
+
|
243 |
# Check for errors
|
244 |
response.raise_for_status()
|
245 |
|
|
|
253 |
|
254 |
|
255 |
#Chatbot Function
|
256 |
+
def chatbot(school_selection,gender,social_media_channel,sports,interests,output_format,number_of_athletes):
|
257 |
|
258 |
start_time = datetime.datetime.now()
|
259 |
|
260 |
+
students = get_students(school_selection)
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
template_content = ''
|
263 |
header = ''
|
|
|
267 |
#print(header)
|
268 |
#print(template_content)
|
269 |
|
|
|
|
|
|
|
270 |
# Create a Jinja2 template from the content
|
271 |
template = Template(template_content)
|
272 |
|
273 |
+
# Render the template with the inputs
|
274 |
+
analysis_input = template.render(students=students, gender=gender,social_media_channel=social_media_channel,sports=sports,interests=interests,format=output_format,number_of_athletes=number_of_athletes)
|
275 |
|
276 |
trimmed_input = prompt_trim(analysis_input)
|
277 |
|
|
|
|
|
|
|
278 |
response = openai.ChatCompletion.create(
|
279 |
model="gpt-4",
|
280 |
#model="gpt-3.5-turbo",
|
|
|
282 |
messages=[
|
283 |
{
|
284 |
"role": "system",
|
285 |
+
"content": header
|
286 |
},
|
287 |
{
|
288 |
"role": "user",
|
|
|
299 |
prompt_tokens = tokens_used.get('prompt_tokens',)
|
300 |
completion_tokens = tokens_used.get('completion_tokens', 0)
|
301 |
|
|
|
|
|
|
|
|
|
302 |
end_time = datetime.datetime.now()
|
303 |
+
|
304 |
response_time = end_time - start_time
|
305 |
|
306 |
+
global scout_response
|
307 |
+
|
308 |
+
scout_response = gpt_response
|
309 |
+
|
310 |
+
append_to_at_scountlog(school_selection, output_format, gender,interests,sports,gpt_response,number_of_athletes,social_media_channel,response_time,question_cost,prompt_tokens,completion_tokens)
|
311 |
|
312 |
return response_label,gpt_response
|
313 |
|
|
|
324 |
data = {
|
325 |
'fields': new_fields
|
326 |
}
|
|
|
327 |
try:
|
|
|
|
|
328 |
|
329 |
+
# Post data to Airtable
|
330 |
+
response = requests.post(airtable_endpoint, headers=headers, json=data)
|
331 |
|
332 |
+
# Check for errors
|
333 |
+
response.raise_for_status()
|
334 |
+
|
335 |
except requests.exceptions.HTTPError as http_error:
|
336 |
# Handle the HTTP error (e.g., log it or display an error message)
|
337 |
print(f"HTTP error occurred: {http_error}")
|
|
|
340 |
# Handle exceptions, log errors, or raise them as needed
|
341 |
print(f"An error occurred: {str(e)}")
|
342 |
|
|
|
343 |
def login_auth(username, password):
|
344 |
|
345 |
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{users_table_name}'
|
|
|
353 |
|
354 |
if response.status_code == 200:
|
355 |
data = response.json()
|
|
|
356 |
if data.get('records'):
|
357 |
|
|
|
358 |
log_login(username)
|
|
|
|
|
359 |
global logged_in_user
|
360 |
logged_in_user = username
|
361 |
|
|
|
373 |
school_selection = []
|
374 |
|
375 |
schools = get_schools()
|
376 |
+
sports = get_sports()
|
377 |
|
378 |
get_examples()
|
379 |
|
|
|
384 |
with gr.Column(scale=2):
|
385 |
gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False)
|
386 |
with gr.Column(scale=2):
|
387 |
+
gr.Markdown(value="# Scout - Powered by CIMS.AI")
|
|
|
388 |
with gr.Column(scale=2):
|
389 |
gr.Markdown("")
|
390 |
with gr.Row():
|
391 |
with gr.Column():
|
392 |
gr.Interface(fn=chatbot,
|
393 |
inputs=[
|
394 |
+
gr.components.Dropdown(schools,multiselect=True,info="Select one or more schools. This will select avaliable Student Athletes from the school(s)",label="School Selection"),
|
395 |
+
gr.components.Dropdown(["Male","Female"],multiselect=True,info="Select one or more.",label="Gender"),
|
396 |
+
gr.components.Dropdown(["Facebook","Instagram","TikTok","X (Twitter)","YouTube","SnapChat","Twitch"],multiselect=True,info="Select one or more.",label="Social Media Channel"),
|
397 |
+
gr.components.Dropdown(sports,multiselect=True,info="Select one or more.",label="Sports"),
|
398 |
+
gr.components.Dropdown(["Fashion","Sports","Food","Cooking","Travel","Arts","Music"],multiselect=True,info="Select one or more.",label="Interests"),
|
399 |
gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"),
|
400 |
+
gr.components.Dropdown(["1","2","3","4","5","6","7","8","9","10"],multiselect=False,info="How many athletes are you looking for?",label="Number of Athletes")],
|
401 |
outputs=[
|
402 |
gr.components.Markdown(response_label),
|
403 |
+
gr.components.HTML(label="Scout Response")
|
404 |
],
|
405 |
+
description="Use Scout to find and rank Athletes that meet your criteria",
|
406 |
+
allow_flagging="never",
|
407 |
+
cache_examples=False
|
408 |
+
)
|
|
|
|
|
409 |
with gr.Row():
|
410 |
with gr.Column():
|
411 |
gr.HTML('<center><i>CIMS.AI Confidential 2023</i></center>')
|
412 |
|
413 |
+
iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'",share=True)
|
414 |
+
#iface.launch()
|