Spaces:
Runtime error
Runtime error
add examples
Browse files- __pycache__/model_utils.cpython-310.pyc +0 -0
- app.py +34 -2
- model_utils.py +66 -0
- requirements.txt +3 -1
__pycache__/model_utils.cpython-310.pyc
ADDED
Binary file (2.35 kB). View file
|
|
app.py
CHANGED
@@ -3,6 +3,10 @@ import logging
|
|
3 |
import sys
|
4 |
from config import WEAVE_PROJECT, WANDB_API_KEY
|
5 |
import weave
|
|
|
|
|
|
|
|
|
6 |
|
7 |
weave.init(WEAVE_PROJECT)
|
8 |
|
@@ -186,9 +190,15 @@ def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
|
|
186 |
|
187 |
return (image_with_bboxes, annotations)
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"
|
190 |
|
191 |
-
with gr.Blocks(
|
192 |
gr.Markdown(INTRO_TEXT)
|
193 |
with gr.Tab("Object Detection - Owl V2"):
|
194 |
with gr.Row():
|
@@ -296,7 +306,29 @@ with gr.Blocks(css="style.css") as demo:
|
|
296 |
fn=detect_brain_tumor_dino,
|
297 |
inputs=seg_inputs,
|
298 |
outputs=seg_outputs,
|
299 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
if __name__ == "__main__":
|
302 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
3 |
import sys
|
4 |
from config import WEAVE_PROJECT, WANDB_API_KEY
|
5 |
import weave
|
6 |
+
from model_utils import get_model_summary, install_flash_attn
|
7 |
+
|
8 |
+
# Install required package
|
9 |
+
install_flash_attn()
|
10 |
|
11 |
weave.init(WEAVE_PROJECT)
|
12 |
|
|
|
190 |
|
191 |
return (image_with_bboxes, annotations)
|
192 |
|
193 |
+
def handle_model_summary(model_name):
|
194 |
+
model_summary, error_message = get_model_summary(model_name)
|
195 |
+
if error_message:
|
196 |
+
return error_message, ""
|
197 |
+
return model_summary, ""
|
198 |
+
|
199 |
INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"
|
200 |
|
201 |
+
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
|
202 |
gr.Markdown(INTRO_TEXT)
|
203 |
with gr.Tab("Object Detection - Owl V2"):
|
204 |
with gr.Row():
|
|
|
306 |
fn=detect_brain_tumor_dino,
|
307 |
inputs=seg_inputs,
|
308 |
outputs=seg_outputs,
|
309 |
+
)
|
310 |
+
|
311 |
+
with gr.Tab("Model Explorer"):
|
312 |
+
gr.Markdown("## Retrieve and Display Model Architecture")
|
313 |
+
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name to retrieve its architecture...")
|
314 |
+
vision_examples = gr.Examples(
|
315 |
+
examples=[
|
316 |
+
["facebook/sam-vit-huge"],
|
317 |
+
["google/owlv2-base-patch16-ensemble"],
|
318 |
+
["IDEA-Research/grounding-dino-base"],
|
319 |
+
["microsoft/Florence-2-large-ft"],
|
320 |
+
["google/paligemma-3b-mix-224"],
|
321 |
+
["llava-hf/llava-v1.6-mistral-7b-hf"],
|
322 |
+
["vikhyatk/moondream2"],
|
323 |
+
["microsoft/Phi-3-vision-128k-instruct"],
|
324 |
+
["HuggingFaceM4/idefics2-8b-chatty"]
|
325 |
+
],
|
326 |
+
inputs=model_name_input
|
327 |
+
)
|
328 |
+
model_output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True)
|
329 |
+
error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True)
|
330 |
+
model_submit_button = gr.Button("Submit")
|
331 |
+
model_submit_button.click(fn=handle_model_summary, inputs=model_name_input, outputs=[model_output, error_output])
|
332 |
|
333 |
if __name__ == "__main__":
|
334 |
demo.queue(max_size=10).launch(debug=True)
|
model_utils.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import BitsAndBytesConfig, AutoConfig, AutoModelForCausalLM, LlavaNextForConditionalGeneration, LlavaForConditionalGeneration, PaliGemmaForConditionalGeneration, Idefics2ForConditionalGeneration, Owlv2ForObjectDetection, GroundingDinoForObjectDetection, SamModel
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
8 |
+
|
9 |
+
def install_flash_attn():
|
10 |
+
subprocess.run(
|
11 |
+
"pip install flash-attn --no-build-isolation",
|
12 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
13 |
+
shell=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
ARCHITECTURE_MAP = {
|
17 |
+
"LlavaNextForConditionalGeneration": LlavaNextForConditionalGeneration,
|
18 |
+
"LlavaForConditionalGeneration": LlavaForConditionalGeneration,
|
19 |
+
"PaliGemmaForConditionalGeneration": PaliGemmaForConditionalGeneration,
|
20 |
+
"Idefics2ForConditionalGeneration": Idefics2ForConditionalGeneration,
|
21 |
+
"Owlv2ForObjectDetection": Owlv2ForObjectDetection,
|
22 |
+
"GroundingDinoForObjectDetection": GroundingDinoForObjectDetection,
|
23 |
+
"SamModel": SamModel,
|
24 |
+
"AutoModelForCausalLM": AutoModelForCausalLM
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
@spaces.GPU
|
29 |
+
def get_model_summary(model_name):
|
30 |
+
try:
|
31 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
32 |
+
architecture = config.architectures[0]
|
33 |
+
quantization_config = getattr(config, 'quantization_config', None)
|
34 |
+
|
35 |
+
if quantization_config:
|
36 |
+
bnb_config = BitsAndBytesConfig(
|
37 |
+
load_in_4bit=quantization_config.get('load_in_4bit', False),
|
38 |
+
load_in_8bit=quantization_config.get('load_in_8bit', False),
|
39 |
+
bnb_4bit_compute_dtype=quantization_config.get('bnb_4bit_compute_dtype', torch.float16),
|
40 |
+
bnb_4bit_quant_type=quantization_config.get('bnb_4bit_quant_type', 'nf4'),
|
41 |
+
bnb_4bit_use_double_quant=quantization_config.get('bnb_4bit_use_double_quant', False),
|
42 |
+
llm_int8_enable_fp32_cpu_offload=quantization_config.get('llm_int8_enable_fp32_cpu_offload', False),
|
43 |
+
llm_int8_has_fp16_weight=quantization_config.get('llm_int8_has_fp16_weight', False),
|
44 |
+
llm_int8_skip_modules=quantization_config.get('llm_int8_skip_modules', None),
|
45 |
+
llm_int8_threshold=quantization_config.get('llm_int8_threshold', 6.0),
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
bnb_config = None
|
49 |
+
|
50 |
+
model_class = ARCHITECTURE_MAP.get(architecture, AutoModelForCausalLM)
|
51 |
+
model = model_class.from_pretrained(
|
52 |
+
model_name, config=bnb_config, trust_remote_code=True
|
53 |
+
)
|
54 |
+
|
55 |
+
if model and not quantization_config:
|
56 |
+
model = model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
57 |
+
|
58 |
+
model_summary = str(model) if model else "Model architecture not found."
|
59 |
+
config_content = config.to_json_string() if config else "Configuration not found."
|
60 |
+
return f"## Model Architecture\n\n{model_summary}\n\n## Configuration\n\n{config_content}", ""
|
61 |
+
except ValueError as ve:
|
62 |
+
return "", f"ValueError: {ve}"
|
63 |
+
except EnvironmentError as ee:
|
64 |
+
return "", f"EnvironmentError: {ee}"
|
65 |
+
except Exception as e:
|
66 |
+
return "", str(e)
|
requirements.txt
CHANGED
@@ -4,4 +4,6 @@ pillow
|
|
4 |
pillow-heif
|
5 |
weave
|
6 |
huggingface-hub
|
7 |
-
gradio
|
|
|
|
|
|
4 |
pillow-heif
|
5 |
weave
|
6 |
huggingface-hub
|
7 |
+
gradio
|
8 |
+
transformers
|
9 |
+
spaces
|