model_explorer2 / utils.py
dwb2023's picture
Update utils.py
f4ee598 verified
raw
history blame
3.46 kB
import subprocess
import os
import torch
from transformers import BitsAndBytesConfig, AutoConfig, AutoModelForCausalLM, LlavaNextForConditionalGeneration, LlavaForConditionalGeneration, PaliGemmaForConditionalGeneration, Idefics2ForConditionalGeneration
from functools import lru_cache
import spaces
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Install required package
def install_flash_attn():
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# Architecture to model class mapping
ARCHITECTURE_MAP = {
"LlavaNextForConditionalGeneration": LlavaNextForConditionalGeneration,
"LlavaForConditionalGeneration": LlavaForConditionalGeneration,
"PaliGemmaForConditionalGeneration": PaliGemmaForConditionalGeneration,
"Idefics2ForConditionalGeneration": Idefics2ForConditionalGeneration,
"AutoModelForCausalLM": AutoModelForCausalLM
}
# Function to get the model summary with caching and GPU support
@spaces.GPU
@lru_cache(maxsize=10)
def get_model_summary(model_name):
"""
Retrieve the model summary for the given model name.
Args:
model_name (str): The name of the model to retrieve the summary for.
Returns:
tuple: A tuple containing the model summary (str) and an error message (str), if any.
"""
try:
# Fetch the model configuration
config = AutoConfig.from_pretrained(model_name)
architecture = config.architectures[0]
quantization_config = getattr(config, 'quantization_config', None)
# Set up BitsAndBytesConfig if the model is quantized
if quantization_config:
bnb_config = BitsAndBytesConfig(
load_in_4bit=quantization_config.get('load_in_4bit', False),
load_in_8bit=quantization_config.get('load_in_8bit', False),
bnb_4bit_compute_dtype=quantization_config.get('bnb_4bit_compute_dtype', torch.float16),
bnb_4bit_quant_type=quantization_config.get('bnb_4bit_quant_type', 'nf4'),
bnb_4bit_use_double_quant=quantization_config.get('bnb_4bit_use_double_quant', False),
llm_int8_enable_fp32_cpu_offload=quantization_config.get('llm_int8_enable_fp32_cpu_offload', False),
llm_int8_has_fp16_weight=quantization_config.get('llm_int8_has_fp16_weight', False),
llm_int8_skip_modules=quantization_config.get('llm_int8_skip_modules', None),
llm_int8_threshold=quantization_config.get('llm_int8_threshold', 6.0),
)
else:
bnb_config = None
# Get the appropriate model class from the architecture map
model_class = ARCHITECTURE_MAP.get(architecture, AutoModelForCausalLM)
# Load the model
model = model_class.from_pretrained(
model_name, config=bnb_config, trust_remote_code=True
)
# Move to device only if the model is not quantized
if model and not quantization_config:
model = model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
model_summary = str(model) if model else "Model architecture not found."
return model_summary, ""
except ValueError as ve:
return "", f"ValueError: {ve}"
except EnvironmentError as ee:
return "", f"EnvironmentError: {ee}"
except Exception as e:
return "", str(e)