Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesuse quantized model
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import yt_dlp as youtube_dl
|
3 |
-
from transformers import pipeline,
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
import torch
|
6 |
from huggingface_hub import CommitScheduler
|
@@ -12,24 +12,21 @@ from datetime import datetime
|
|
12 |
from pathlib import Path
|
13 |
from uuid import uuid4
|
14 |
from functools import lru_cache
|
15 |
-
import bitsandbytes as bnb
|
16 |
|
17 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
18 |
|
19 |
-
MODEL_NAME = "
|
20 |
BATCH_SIZE = 8
|
21 |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes
|
22 |
|
23 |
device = 0 if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
-
# Load model
|
26 |
-
|
27 |
-
|
28 |
-
bnb_4bit_compute_dtype=torch.float16,
|
29 |
-
)
|
30 |
|
31 |
-
#
|
32 |
-
pipe = pipeline(task="automatic-speech-recognition", model=
|
33 |
|
34 |
# Define paths and create directory if not exists
|
35 |
JSON_DATASET_DIR = Path("json_dataset")
|
@@ -52,7 +49,7 @@ def _return_yt_html_embed(yt_url):
|
|
52 |
)
|
53 |
return HTML_str
|
54 |
|
55 |
-
@spaces.GPU
|
56 |
@lru_cache(maxsize=10)
|
57 |
def transcribe_audio(inputs, task):
|
58 |
if inputs is None:
|
@@ -75,7 +72,7 @@ def download_yt_audio(yt_url, filename):
|
|
75 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
76 |
ydl.download([yt_url])
|
77 |
|
78 |
-
@spaces.GPU
|
79 |
@lru_cache(maxsize=10)
|
80 |
def yt_transcribe(yt_url, task):
|
81 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
1 |
import gradio as gr
|
2 |
import yt_dlp as youtube_dl
|
3 |
+
from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
import torch
|
6 |
from huggingface_hub import CommitScheduler
|
|
|
12 |
from pathlib import Path
|
13 |
from uuid import uuid4
|
14 |
from functools import lru_cache
|
|
|
15 |
|
16 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
17 |
|
18 |
+
MODEL_NAME = "dwb2023/whisper-large-v3-quantized"
|
19 |
BATCH_SIZE = 8
|
20 |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes
|
21 |
|
22 |
device = 0 if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
+
# Load the model
|
25 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME)
|
26 |
+
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME)
|
|
|
|
|
27 |
|
28 |
+
# Initialize the pipeline with the quantized model
|
29 |
+
pipe = pipeline(task="automatic-speech-recognition", model=model, tokenizer=tokenizer, chunk_length_s=30, device=device)
|
30 |
|
31 |
# Define paths and create directory if not exists
|
32 |
JSON_DATASET_DIR = Path("json_dataset")
|
|
|
49 |
)
|
50 |
return HTML_str
|
51 |
|
52 |
+
@spaces.GPU
|
53 |
@lru_cache(maxsize=10)
|
54 |
def transcribe_audio(inputs, task):
|
55 |
if inputs is None:
|
|
|
72 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
73 |
ydl.download([yt_url])
|
74 |
|
75 |
+
@spaces.GPU
|
76 |
@lru_cache(maxsize=10)
|
77 |
def yt_transcribe(yt_url, task):
|
78 |
with tempfile.TemporaryDirectory() as tmpdirname:
|