Spaces:
Runtime error
Runtime error
init
Browse files- .gitignore +3 -0
- Pipfile +14 -0
- Pipfile.lock +0 -0
- README.md +42 -6
- app.py +20 -0
- bleu.py +590 -0
- codebleu.py +135 -0
- dataflow_match.py +145 -0
- keywords.tar.gz +3 -0
- my_codebleu.py +80 -0
- parser_DFG.py +1184 -0
- parser_utils.py +101 -0
- requirements.txt +3 -0
- syntax_match.py +75 -0
- tests.py +17 -0
- utils.py +106 -0
- weighted_ngram_match.py +558 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.vscode
|
3 |
+
flagged
|
Pipfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
evaluate = "*"
|
8 |
+
tree-sitter = "==0.2.2"
|
9 |
+
gradio = "*"
|
10 |
+
|
11 |
+
[dev-packages]
|
12 |
+
|
13 |
+
[requires]
|
14 |
+
python_version = "3.8"
|
Pipfile.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -1,12 +1,48 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: codebleu
|
3 |
+
tags:
|
4 |
+
- evaluate
|
5 |
+
- metric
|
6 |
+
description: "CodeBLEU"
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.0.2
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
---
|
12 |
|
13 |
+
# Metric Card for CodeBLEU
|
14 |
+
|
15 |
+
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
16 |
+
|
17 |
+
## Metric Description
|
18 |
+
*Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
|
19 |
+
|
20 |
+
## How to Use
|
21 |
+
*Give general statement of how to use the metric*
|
22 |
+
|
23 |
+
*Provide simplest possible example for using the metric*
|
24 |
+
|
25 |
+
### Inputs
|
26 |
+
*List all input arguments in the format below*
|
27 |
+
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
|
28 |
+
|
29 |
+
### Output Values
|
30 |
+
|
31 |
+
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
|
32 |
+
|
33 |
+
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
|
34 |
+
|
35 |
+
#### Values from Popular Papers
|
36 |
+
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
37 |
+
|
38 |
+
### Examples
|
39 |
+
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
40 |
+
|
41 |
+
## Limitations and Bias
|
42 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
43 |
+
|
44 |
+
## Citation
|
45 |
+
*Cite the source where this metric was introduced.*
|
46 |
+
|
47 |
+
## Further References
|
48 |
+
*Add any useful further references.*
|
app.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
# import re
|
4 |
+
|
5 |
+
# match = re.match(
|
6 |
+
# r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)",
|
7 |
+
# "from .bleu import bleu",
|
8 |
+
# flags=re.MULTILINE,
|
9 |
+
# )
|
10 |
+
# match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", "import .bleu", flags=re.MULTILINE)
|
11 |
+
|
12 |
+
# print(match)
|
13 |
+
module = evaluate.load("dvitel/codebleu")
|
14 |
+
launch_gradio_widget(module)
|
15 |
+
# src = 'class AcidicSwampOoze(MinionCard):§ def __init__(self):§ super().__init__("Acidic Swamp Ooze", 2, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))§§ def create_minion(self, player):§ return Minion(3, 2)§'
|
16 |
+
# tgt = 'class AcidSwampOoze(MinionCard):§ def __init__(self):§ super().__init__("Acidic Swamp Ooze", 2, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))§§ def create_minion(self, player):§ return Minion(3, 2)§'
|
17 |
+
# src = src.replace("Β§","\n")
|
18 |
+
# tgt = tgt.replace("Β§","\n")
|
19 |
+
# res = module.compute(predictions = [tgt], references = [[src]])
|
20 |
+
# print(res)
|
bleu.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Natural Language Toolkit: BLEU Score
|
3 |
+
#
|
4 |
+
# Copyright (C) 2001-2020 NLTK Project
|
5 |
+
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
6 |
+
# Contributors: BjΓΆrn Mattsson, Dmitrijs Milajevs, Liling Tan
|
7 |
+
# URL: <http://nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""BLEU score implementation."""
|
11 |
+
|
12 |
+
import math
|
13 |
+
import sys
|
14 |
+
from fractions import Fraction
|
15 |
+
import warnings
|
16 |
+
from collections import Counter
|
17 |
+
|
18 |
+
from .utils import ngrams
|
19 |
+
import pdb
|
20 |
+
|
21 |
+
|
22 |
+
def sentence_bleu(
|
23 |
+
references,
|
24 |
+
hypothesis,
|
25 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
26 |
+
smoothing_function=None,
|
27 |
+
auto_reweigh=False,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
31 |
+
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
32 |
+
"BLEU: a method for automatic evaluation of machine translation."
|
33 |
+
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
34 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
35 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
36 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
37 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
38 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
39 |
+
... 'that', 'party', 'direct']
|
40 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
41 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
42 |
+
... 'heed', 'Party', 'commands']
|
43 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
44 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
45 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
46 |
+
... 'Party']
|
47 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
48 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
49 |
+
... 'of', 'the', 'party']
|
50 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
51 |
+
0.5045...
|
52 |
+
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
53 |
+
value 0. This is because the precision for the order of n-grams without
|
54 |
+
overlap is 0, and the geometric mean in the final BLEU score computation
|
55 |
+
multiplies the 0 with the precision of other n-grams. This results in 0
|
56 |
+
(independently of the precision of the othe n-gram orders). The following
|
57 |
+
example has zero 3-gram and 4-gram overlaps:
|
58 |
+
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
59 |
+
0.0
|
60 |
+
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
61 |
+
function can be used.
|
62 |
+
>>> chencherry = SmoothingFunction()
|
63 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
64 |
+
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
65 |
+
0.0370...
|
66 |
+
The default BLEU calculates a score for up to 4-grams using uniform
|
67 |
+
weights (this is called BLEU-4). To evaluate your translations with
|
68 |
+
higher/lower order ngrams, use customized weights. E.g. when accounting
|
69 |
+
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
70 |
+
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
71 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
72 |
+
0.3920...
|
73 |
+
:param references: reference sentences
|
74 |
+
:type references: list(list(str))
|
75 |
+
:param hypothesis: a hypothesis sentence
|
76 |
+
:type hypothesis: list(str)
|
77 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
78 |
+
:type weights: list(float)
|
79 |
+
:param smoothing_function:
|
80 |
+
:type smoothing_function: SmoothingFunction
|
81 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
82 |
+
:type auto_reweigh: bool
|
83 |
+
:return: The sentence-level BLEU score.
|
84 |
+
:rtype: float
|
85 |
+
"""
|
86 |
+
return corpus_bleu(
|
87 |
+
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
def corpus_bleu(
|
92 |
+
list_of_references,
|
93 |
+
hypotheses,
|
94 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
95 |
+
smoothing_function=None,
|
96 |
+
auto_reweigh=False,
|
97 |
+
):
|
98 |
+
"""
|
99 |
+
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
100 |
+
the hypotheses and their respective references.
|
101 |
+
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
102 |
+
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
103 |
+
the micro-average precision (i.e. summing the numerators and denominators
|
104 |
+
for each hypothesis-reference(s) pairs before the division).
|
105 |
+
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
106 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
107 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
108 |
+
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
109 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
110 |
+
... 'heed', 'Party', 'commands']
|
111 |
+
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
112 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
113 |
+
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
114 |
+
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
115 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
116 |
+
... 'of', 'the', 'party']
|
117 |
+
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
118 |
+
... 'interested', 'in', 'world', 'history']
|
119 |
+
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
120 |
+
... 'because', 'he', 'read', 'the', 'book']
|
121 |
+
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
122 |
+
>>> hypotheses = [hyp1, hyp2]
|
123 |
+
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
124 |
+
0.5920...
|
125 |
+
The example below show that corpus_bleu() is different from averaging
|
126 |
+
sentence_bleu() for hypotheses
|
127 |
+
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
128 |
+
>>> score2 = sentence_bleu([ref2a], hyp2)
|
129 |
+
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
130 |
+
0.6223...
|
131 |
+
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
132 |
+
:type list_of_references: list(list(list(str)))
|
133 |
+
:param hypotheses: a list of hypothesis sentences
|
134 |
+
:type hypotheses: list(list(str))
|
135 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
136 |
+
:type weights: list(float)
|
137 |
+
:param smoothing_function:
|
138 |
+
:type smoothing_function: SmoothingFunction
|
139 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
140 |
+
:type auto_reweigh: bool
|
141 |
+
:return: The corpus-level BLEU score.
|
142 |
+
:rtype: float
|
143 |
+
"""
|
144 |
+
# Before proceeding to compute BLEU, perform sanity checks.
|
145 |
+
|
146 |
+
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
147 |
+
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
148 |
+
hyp_lengths, ref_lengths = 0, 0
|
149 |
+
|
150 |
+
assert len(list_of_references) == len(hypotheses), (
|
151 |
+
"The number of hypotheses and their reference(s) should be the " "same "
|
152 |
+
)
|
153 |
+
|
154 |
+
# Iterate through each hypothesis and their corresponding references.
|
155 |
+
for references, hypothesis in zip(list_of_references, hypotheses):
|
156 |
+
# For each order of ngram, calculate the numerator and
|
157 |
+
# denominator for the corpus-level modified precision.
|
158 |
+
for i, _ in enumerate(weights, start=1):
|
159 |
+
p_i = modified_precision(references, hypothesis, i)
|
160 |
+
p_numerators[i] += p_i.numerator
|
161 |
+
p_denominators[i] += p_i.denominator
|
162 |
+
|
163 |
+
# Calculate the hypothesis length and the closest reference length.
|
164 |
+
# Adds them to the corpus-level hypothesis and reference counts.
|
165 |
+
hyp_len = len(hypothesis)
|
166 |
+
hyp_lengths += hyp_len
|
167 |
+
ref_lengths += closest_ref_length(references, hyp_len)
|
168 |
+
|
169 |
+
# Calculate corpus-level brevity penalty.
|
170 |
+
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
171 |
+
|
172 |
+
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
173 |
+
# order of n-grams < 4 and weights is set at default.
|
174 |
+
if auto_reweigh:
|
175 |
+
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
176 |
+
weights = (1 / hyp_lengths,) * hyp_lengths
|
177 |
+
|
178 |
+
# Collects the various precision values for the different ngram orders.
|
179 |
+
p_n = [
|
180 |
+
Fraction(p_numerators[i], p_denominators[i], _normalize=False)
|
181 |
+
for i, _ in enumerate(weights, start=1)
|
182 |
+
]
|
183 |
+
|
184 |
+
# Returns 0 if there's no matching n-grams
|
185 |
+
# We only need to check for p_numerators[1] == 0, since if there's
|
186 |
+
# no unigrams, there won't be any higher order ngrams.
|
187 |
+
if p_numerators[1] == 0:
|
188 |
+
return 0
|
189 |
+
|
190 |
+
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
191 |
+
if not smoothing_function:
|
192 |
+
smoothing_function = SmoothingFunction().method1
|
193 |
+
# Smoothen the modified precision.
|
194 |
+
# Note: smoothing_function() may convert values into floats;
|
195 |
+
# it tries to retain the Fraction object as much as the
|
196 |
+
# smoothing method allows.
|
197 |
+
p_n = smoothing_function(
|
198 |
+
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
199 |
+
)
|
200 |
+
s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
|
201 |
+
s = bp * math.exp(math.fsum(s))
|
202 |
+
return s
|
203 |
+
|
204 |
+
|
205 |
+
def modified_precision(references, hypothesis, n):
|
206 |
+
"""
|
207 |
+
Calculate modified ngram precision.
|
208 |
+
The normal precision method may lead to some wrong translations with
|
209 |
+
high-precision, e.g., the translation, in which a word of reference
|
210 |
+
repeats several times, has very high precision.
|
211 |
+
This function only returns the Fraction object that contains the numerator
|
212 |
+
and denominator necessary to calculate the corpus-level precision.
|
213 |
+
To calculate the modified precision for a single pair of hypothesis and
|
214 |
+
references, cast the Fraction object into a float.
|
215 |
+
The famous "the the the ... " example shows that you can get BLEU precision
|
216 |
+
by duplicating high frequency words.
|
217 |
+
>>> reference1 = 'the cat is on the mat'.split()
|
218 |
+
>>> reference2 = 'there is a cat on the mat'.split()
|
219 |
+
>>> hypothesis1 = 'the the the the the the the'.split()
|
220 |
+
>>> references = [reference1, reference2]
|
221 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
222 |
+
0.2857...
|
223 |
+
In the modified n-gram precision, a reference word will be considered
|
224 |
+
exhausted after a matching hypothesis word is identified, e.g.
|
225 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
226 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
227 |
+
... 'forever', 'heed', 'Party', 'commands']
|
228 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
229 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
230 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
231 |
+
... 'Party']
|
232 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
233 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
234 |
+
... 'of', 'the', 'party']
|
235 |
+
>>> hypothesis = 'of the'.split()
|
236 |
+
>>> references = [reference1, reference2, reference3]
|
237 |
+
>>> float(modified_precision(references, hypothesis, n=1))
|
238 |
+
1.0
|
239 |
+
>>> float(modified_precision(references, hypothesis, n=2))
|
240 |
+
1.0
|
241 |
+
An example of a normal machine translation hypothesis:
|
242 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
243 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
244 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
245 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
246 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
247 |
+
... 'that', 'party', 'direct']
|
248 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
249 |
+
... 'ensures', 'that', 'the', 'military', 'will',
|
250 |
+
... 'forever', 'heed', 'Party', 'commands']
|
251 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
252 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
253 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
254 |
+
... 'Party']
|
255 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
256 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
257 |
+
... 'of', 'the', 'party']
|
258 |
+
>>> references = [reference1, reference2, reference3]
|
259 |
+
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
|
260 |
+
0.9444...
|
261 |
+
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
|
262 |
+
0.5714...
|
263 |
+
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
|
264 |
+
0.5882352941176471
|
265 |
+
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
|
266 |
+
0.07692...
|
267 |
+
:param references: A list of reference translations.
|
268 |
+
:type references: list(list(str))
|
269 |
+
:param hypothesis: A hypothesis translation.
|
270 |
+
:type hypothesis: list(str)
|
271 |
+
:param n: The ngram order.
|
272 |
+
:type n: int
|
273 |
+
:return: BLEU's modified precision for the nth order ngram.
|
274 |
+
:rtype: Fraction
|
275 |
+
"""
|
276 |
+
# Extracts all ngrams in hypothesis
|
277 |
+
# Set an empty Counter if hypothesis is empty.
|
278 |
+
|
279 |
+
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
280 |
+
# Extract a union of references' counts.
|
281 |
+
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
282 |
+
max_counts = {}
|
283 |
+
for reference in references:
|
284 |
+
reference_counts = (
|
285 |
+
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
286 |
+
)
|
287 |
+
for ngram in counts:
|
288 |
+
max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram])
|
289 |
+
|
290 |
+
# Assigns the intersection between hypothesis and references' counts.
|
291 |
+
clipped_counts = {
|
292 |
+
ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
293 |
+
}
|
294 |
+
|
295 |
+
numerator = sum(clipped_counts.values())
|
296 |
+
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
297 |
+
# Usually this happens when the ngram order is > len(reference).
|
298 |
+
denominator = max(1, sum(counts.values()))
|
299 |
+
|
300 |
+
return Fraction(numerator, denominator, _normalize=False)
|
301 |
+
|
302 |
+
|
303 |
+
def closest_ref_length(references, hyp_len):
|
304 |
+
"""
|
305 |
+
This function finds the reference that is the closest length to the
|
306 |
+
hypothesis. The closest reference length is referred to as *r* variable
|
307 |
+
from the brevity penalty formula in Papineni et. al. (2002)
|
308 |
+
:param references: A list of reference translations.
|
309 |
+
:type references: list(list(str))
|
310 |
+
:param hyp_len: The length of the hypothesis.
|
311 |
+
:type hyp_len: int
|
312 |
+
:return: The length of the reference that's closest to the hypothesis.
|
313 |
+
:rtype: int
|
314 |
+
"""
|
315 |
+
ref_lens = (len(reference) for reference in references)
|
316 |
+
closest_ref_len = min(
|
317 |
+
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
318 |
+
)
|
319 |
+
return closest_ref_len
|
320 |
+
|
321 |
+
|
322 |
+
def brevity_penalty(closest_ref_len, hyp_len):
|
323 |
+
"""
|
324 |
+
Calculate brevity penalty.
|
325 |
+
As the modified n-gram precision still has the problem from the short
|
326 |
+
length sentence, brevity penalty is used to modify the overall BLEU
|
327 |
+
score according to length.
|
328 |
+
An example from the paper. There are three references with length 12, 15
|
329 |
+
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
330 |
+
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
331 |
+
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
332 |
+
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
333 |
+
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
334 |
+
>>> references = [reference1, reference2, reference3]
|
335 |
+
>>> hyp_len = len(hypothesis)
|
336 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
337 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
338 |
+
1.0
|
339 |
+
In case a hypothesis translation is shorter than the references, penalty is
|
340 |
+
applied.
|
341 |
+
>>> references = [['a'] * 28, ['a'] * 28]
|
342 |
+
>>> hypothesis = ['a'] * 12
|
343 |
+
>>> hyp_len = len(hypothesis)
|
344 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
345 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
346 |
+
0.2635971381157267
|
347 |
+
The length of the closest reference is used to compute the penalty. If the
|
348 |
+
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
349 |
+
penalty is applied because the hypothesis length (12) is less then the
|
350 |
+
closest reference length (13).
|
351 |
+
>>> references = [['a'] * 13, ['a'] * 2]
|
352 |
+
>>> hypothesis = ['a'] * 12
|
353 |
+
>>> hyp_len = len(hypothesis)
|
354 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
355 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
356 |
+
0.9200...
|
357 |
+
The brevity penalty doesn't depend on reference order. More importantly,
|
358 |
+
when two reference sentences are at the same distance, the shortest
|
359 |
+
reference sentence length is used.
|
360 |
+
>>> references = [['a'] * 13, ['a'] * 11]
|
361 |
+
>>> hypothesis = ['a'] * 12
|
362 |
+
>>> hyp_len = len(hypothesis)
|
363 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
364 |
+
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
365 |
+
>>> hyp_len = len(hypothesis)
|
366 |
+
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
367 |
+
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
368 |
+
>>> bp1 == bp2 == 1
|
369 |
+
True
|
370 |
+
A test example from mteval-v13a.pl (starting from the line 705):
|
371 |
+
>>> references = [['a'] * 11, ['a'] * 8]
|
372 |
+
>>> hypothesis = ['a'] * 7
|
373 |
+
>>> hyp_len = len(hypothesis)
|
374 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
375 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
376 |
+
0.8668...
|
377 |
+
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
378 |
+
>>> hypothesis = ['a'] * 7
|
379 |
+
>>> hyp_len = len(hypothesis)
|
380 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
381 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
382 |
+
1.0
|
383 |
+
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
384 |
+
sum of all the hypotheses' lengths for a corpus
|
385 |
+
:type hyp_len: int
|
386 |
+
:param closest_ref_len: The length of the closest reference for a single
|
387 |
+
hypothesis OR the sum of all the closest references for every hypotheses.
|
388 |
+
:type closest_ref_len: int
|
389 |
+
:return: BLEU's brevity penalty.
|
390 |
+
:rtype: float
|
391 |
+
"""
|
392 |
+
if hyp_len > closest_ref_len:
|
393 |
+
return 1
|
394 |
+
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
395 |
+
elif hyp_len == 0:
|
396 |
+
return 0
|
397 |
+
else:
|
398 |
+
return math.exp(1 - closest_ref_len / hyp_len)
|
399 |
+
|
400 |
+
|
401 |
+
class SmoothingFunction:
|
402 |
+
"""
|
403 |
+
This is an implementation of the smoothing techniques
|
404 |
+
for segment-level BLEU scores that was presented in
|
405 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
406 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
407 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
408 |
+
"""
|
409 |
+
|
410 |
+
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
411 |
+
"""
|
412 |
+
This will initialize the parameters required for the various smoothing
|
413 |
+
techniques, the default values are set to the numbers used in the
|
414 |
+
experiments from Chen and Cherry (2014).
|
415 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
416 |
+
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
417 |
+
... 'commands', 'of', 'the', 'party']
|
418 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
419 |
+
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
420 |
+
... 'Party', 'commands']
|
421 |
+
>>> chencherry = SmoothingFunction()
|
422 |
+
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
423 |
+
0.4118...
|
424 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
425 |
+
0.4118...
|
426 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
427 |
+
0.4118...
|
428 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
429 |
+
0.4489...
|
430 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
431 |
+
0.4118...
|
432 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
433 |
+
0.4118...
|
434 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
435 |
+
0.4905...
|
436 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
437 |
+
0.4135...
|
438 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
439 |
+
0.4905...
|
440 |
+
:param epsilon: the epsilon value use in method 1
|
441 |
+
:type epsilon: float
|
442 |
+
:param alpha: the alpha value use in method 6
|
443 |
+
:type alpha: int
|
444 |
+
:param k: the k value use in method 4
|
445 |
+
:type k: int
|
446 |
+
"""
|
447 |
+
self.epsilon = epsilon
|
448 |
+
self.alpha = alpha
|
449 |
+
self.k = k
|
450 |
+
|
451 |
+
def method0(self, p_n, *args, **kwargs):
|
452 |
+
"""
|
453 |
+
No smoothing.
|
454 |
+
"""
|
455 |
+
p_n_new = []
|
456 |
+
for i, p_i in enumerate(p_n):
|
457 |
+
if p_i.numerator != 0:
|
458 |
+
p_n_new.append(p_i)
|
459 |
+
else:
|
460 |
+
_msg = str(
|
461 |
+
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
462 |
+
"Therefore the BLEU score evaluates to 0, independently of\n"
|
463 |
+
"how many N-gram overlaps of lower order it contains.\n"
|
464 |
+
"Consider using lower n-gram order or use "
|
465 |
+
"SmoothingFunction()"
|
466 |
+
).format(i + 1)
|
467 |
+
warnings.warn(_msg)
|
468 |
+
# When numerator==0 where denonminator==0 or !=0, the result
|
469 |
+
# for the precision score should be equal to 0 or undefined.
|
470 |
+
# Due to BLEU geometric mean computation in logarithm space,
|
471 |
+
# we we need to take the return sys.float_info.min such that
|
472 |
+
# math.log(sys.float_info.min) returns a 0 precision score.
|
473 |
+
p_n_new.append(sys.float_info.min)
|
474 |
+
return p_n_new
|
475 |
+
|
476 |
+
def method1(self, p_n, *args, **kwargs):
|
477 |
+
"""
|
478 |
+
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
479 |
+
"""
|
480 |
+
return [
|
481 |
+
(p_i.numerator + self.epsilon) / p_i.denominator
|
482 |
+
if p_i.numerator == 0
|
483 |
+
else p_i
|
484 |
+
for p_i in p_n
|
485 |
+
]
|
486 |
+
|
487 |
+
def method2(self, p_n, *args, **kwargs):
|
488 |
+
"""
|
489 |
+
Smoothing method 2: Add 1 to both numerator and denominator from
|
490 |
+
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
491 |
+
machine translation quality using longest common subsequence and
|
492 |
+
skip-bigram statistics. In ACL04.
|
493 |
+
"""
|
494 |
+
return [
|
495 |
+
Fraction(p_i.numerator + 1, p_i.denominator + 1, _normalize=False)
|
496 |
+
for p_i in p_n
|
497 |
+
]
|
498 |
+
|
499 |
+
def method3(self, p_n, *args, **kwargs):
|
500 |
+
"""
|
501 |
+
Smoothing method 3: NIST geometric sequence smoothing
|
502 |
+
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
503 |
+
precision score whose matching n-gram count is null.
|
504 |
+
k is 1 for the first 'n' value for which the n-gram match count is null/
|
505 |
+
For example, if the text contains:
|
506 |
+
- one 2-gram match
|
507 |
+
- and (consequently) two 1-gram matches
|
508 |
+
the n-gram count for each individual precision score would be:
|
509 |
+
- n=1 => prec_count = 2 (two unigrams)
|
510 |
+
- n=2 => prec_count = 1 (one bigram)
|
511 |
+
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
512 |
+
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
513 |
+
"""
|
514 |
+
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
515 |
+
for i, p_i in enumerate(p_n):
|
516 |
+
if p_i.numerator == 0:
|
517 |
+
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
518 |
+
incvnt += 1
|
519 |
+
return p_n
|
520 |
+
|
521 |
+
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
522 |
+
"""
|
523 |
+
Smoothing method 4:
|
524 |
+
Shorter translations may have inflated precision values due to having
|
525 |
+
smaller denominators; therefore, we give them proportionally
|
526 |
+
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
527 |
+
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
528 |
+
"""
|
529 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
530 |
+
for i, p_i in enumerate(p_n):
|
531 |
+
if p_i.numerator == 0 and hyp_len != 0:
|
532 |
+
incvnt = i + 1 * self.k / math.log(
|
533 |
+
hyp_len
|
534 |
+
) # Note that this K is different from the K from NIST.
|
535 |
+
p_n[i] = incvnt / p_i.denominator
|
536 |
+
return p_n
|
537 |
+
|
538 |
+
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
539 |
+
"""
|
540 |
+
Smoothing method 5:
|
541 |
+
The matched counts for similar values of n should be similar. To a
|
542 |
+
calculate the n-gram matched count, it averages the nβ1, n and n+1 gram
|
543 |
+
matched counts.
|
544 |
+
"""
|
545 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
546 |
+
m = {}
|
547 |
+
# Requires an precision value for an addition ngram order.
|
548 |
+
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
549 |
+
m[-1] = p_n[0] + 1
|
550 |
+
for i, p_i in enumerate(p_n):
|
551 |
+
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
552 |
+
m[i] = p_n[i]
|
553 |
+
return p_n
|
554 |
+
|
555 |
+
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
556 |
+
"""
|
557 |
+
Smoothing method 6:
|
558 |
+
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
559 |
+
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
560 |
+
between pn and pnβ1 will be the same as that between pnβ1 and pnβ2; from
|
561 |
+
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
562 |
+
Gradient Ascent. In NAACL.
|
563 |
+
"""
|
564 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
565 |
+
# This smoothing only works when p_1 and p_2 is non-zero.
|
566 |
+
# Raise an error with an appropriate message when the input is too short
|
567 |
+
# to use this smoothing technique.
|
568 |
+
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
569 |
+
for i, p_i in enumerate(p_n):
|
570 |
+
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
571 |
+
continue
|
572 |
+
else:
|
573 |
+
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
574 |
+
# No. of ngrams in translation that matches the reference.
|
575 |
+
m = p_i.numerator
|
576 |
+
# No. of ngrams in translation.
|
577 |
+
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
578 |
+
# Calculates the interpolated precision.
|
579 |
+
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
580 |
+
return p_n
|
581 |
+
|
582 |
+
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
583 |
+
"""
|
584 |
+
Smoothing method 7:
|
585 |
+
Interpolates methods 4 and 5.
|
586 |
+
"""
|
587 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
588 |
+
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
589 |
+
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
590 |
+
return p_n
|
codebleu.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""CodeBLEU metric."""
|
15 |
+
|
16 |
+
import evaluate
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
#these were added to fix evaluate load of dependencies
|
20 |
+
from .bleu import corpus_bleu
|
21 |
+
from .utils import pad_sequence
|
22 |
+
from .weighted_ngram_match import ngrams
|
23 |
+
from .syntax_match import calc_syntax_match
|
24 |
+
from .parser_DFG import DFG_python
|
25 |
+
from .parser_utils import tree_to_token_index
|
26 |
+
from .dataflow_match import calc_dataflow_match
|
27 |
+
|
28 |
+
from .my_codebleu import calc_codebleu
|
29 |
+
|
30 |
+
|
31 |
+
# TODO: Add BibTeX citation
|
32 |
+
_CITATION = """\
|
33 |
+
@InProceedings{huggingface:module,
|
34 |
+
title = {CodeBLEU: A Metric for Evaluating Code Generation},
|
35 |
+
authors={Sedykh, Ivan},
|
36 |
+
year={2022}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
# TODO: Add description of the module here
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
This new module is an adaptation of the original CodeBLEU metric from CodexGLUE benchmark
|
43 |
+
for evaluating code generation.
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
# TODO: Add description of the arguments of the module here
|
48 |
+
_KWARGS_DESCRIPTION = """
|
49 |
+
Calculates how good are predictions given some references, using certain scores
|
50 |
+
Args:
|
51 |
+
predictions: list of predictions to score. Each predictions
|
52 |
+
should be a string with tokens separated by spaces.
|
53 |
+
references: list of lists of references. Each list
|
54 |
+
should contain len(predictions) items.
|
55 |
+
lang: programming language in ['java','js','c_sharp','php','go','python','ruby']
|
56 |
+
tokenizer: tokenizer function str -> List[str], Defaults to lambda s: s.split()
|
57 |
+
params: str, weights for averaging(see CodeBLEU paper).
|
58 |
+
Defaults to equal weights "0.25,0.25,0.25,0.25".
|
59 |
+
Returns:
|
60 |
+
CodeBLEU: resulting score,
|
61 |
+
ngram_match_score: See paper CodeBLEU,
|
62 |
+
weighted_ngram_match_score: See paper CodeBLEU,
|
63 |
+
syntax_match_score: See paper CodeBLEU,
|
64 |
+
dataflow_match_score: See paper CodeBLEU,
|
65 |
+
Examples:
|
66 |
+
|
67 |
+
>>> codebleu = evaluate.load("my_new_module")
|
68 |
+
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
69 |
+
>>> print(results)
|
70 |
+
{'accuracy': 1.0}
|
71 |
+
"""
|
72 |
+
|
73 |
+
# TODO: Define external resources urls if needed
|
74 |
+
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
75 |
+
|
76 |
+
|
77 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
78 |
+
class codebleu(evaluate.Metric):
|
79 |
+
"""CodeBLEU metric from CodexGLUE"""
|
80 |
+
|
81 |
+
def _info(self):
|
82 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
83 |
+
return evaluate.MetricInfo(
|
84 |
+
# This is the description that will appear on the modules page.
|
85 |
+
module_type="metric",
|
86 |
+
description=_DESCRIPTION,
|
87 |
+
citation=_CITATION,
|
88 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
89 |
+
# This defines the format of each prediction and reference
|
90 |
+
features=[
|
91 |
+
datasets.Features(
|
92 |
+
{
|
93 |
+
"predictions": datasets.Value("string", id="sequence"),
|
94 |
+
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
|
95 |
+
}
|
96 |
+
),
|
97 |
+
datasets.Features(
|
98 |
+
{
|
99 |
+
"predictions": datasets.Value("string", id="sequence"),
|
100 |
+
"references": datasets.Value("string", id="sequence"),
|
101 |
+
}
|
102 |
+
),
|
103 |
+
],
|
104 |
+
# Homepage of the module for documentation
|
105 |
+
homepage="",
|
106 |
+
# Additional links to the codebase or references
|
107 |
+
codebase_urls=[],
|
108 |
+
reference_urls=[
|
109 |
+
"https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator",
|
110 |
+
"https://arxiv.org/abs/2009.10297",
|
111 |
+
],
|
112 |
+
)
|
113 |
+
|
114 |
+
def _download_and_prepare(self, dl_manager):
|
115 |
+
"""Optional: download external resources useful to compute the scores"""
|
116 |
+
# TODO: Download external resources if needed
|
117 |
+
# source CodeBLEU/parser/build.sh
|
118 |
+
# print(dl_manager)
|
119 |
+
self.kw_dir = dl_manager.download_and_extract("keywords.tar.gz")
|
120 |
+
print("Downloaded keywords to", self.kw_dir)
|
121 |
+
self.langso_dir = dl_manager.download("my-languages.so")
|
122 |
+
print("Downloaded languages.so to", self.langso_dir)
|
123 |
+
|
124 |
+
def _compute(self, predictions, references, lang = "python", tokenizer=None, params="0.25,0.25,0.25,0.25"):
|
125 |
+
"""Returns the scores"""
|
126 |
+
res = calc_codebleu(
|
127 |
+
predictions=predictions,
|
128 |
+
references=references,
|
129 |
+
lang=lang,
|
130 |
+
tokenizer=tokenizer,
|
131 |
+
params=params,
|
132 |
+
kw_dir = self.kw_dir,
|
133 |
+
langso_dir = self.langso_dir
|
134 |
+
)
|
135 |
+
return res
|
dataflow_match.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
from .parser_DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
6 |
+
from .parser_utils import (remove_comments_and_docstrings,
|
7 |
+
tree_to_token_index,
|
8 |
+
index_to_code_token,
|
9 |
+
tree_to_variable_index)
|
10 |
+
from tree_sitter import Language, Parser
|
11 |
+
import pdb
|
12 |
+
|
13 |
+
dfg_function={
|
14 |
+
'python':DFG_python,
|
15 |
+
'java':DFG_java,
|
16 |
+
'ruby':DFG_ruby,
|
17 |
+
'go':DFG_go,
|
18 |
+
'php':DFG_php,
|
19 |
+
'javascript':DFG_javascript,
|
20 |
+
'c_sharp':DFG_csharp,
|
21 |
+
}
|
22 |
+
|
23 |
+
def calc_dataflow_match(references, candidate, lang):
|
24 |
+
return corpus_dataflow_match([references], [candidate], lang)
|
25 |
+
|
26 |
+
def corpus_dataflow_match(references, candidates, lang, langso_dir):
|
27 |
+
LANGUAGE = Language(langso_dir, lang)
|
28 |
+
parser = Parser()
|
29 |
+
parser.set_language(LANGUAGE)
|
30 |
+
parser = [parser,dfg_function[lang]]
|
31 |
+
match_count = 0
|
32 |
+
total_count = 0
|
33 |
+
|
34 |
+
for i in range(len(candidates)):
|
35 |
+
references_sample = references[i]
|
36 |
+
candidate = candidates[i]
|
37 |
+
for reference in references_sample:
|
38 |
+
try:
|
39 |
+
candidate=remove_comments_and_docstrings(candidate,'java')
|
40 |
+
except:
|
41 |
+
pass
|
42 |
+
try:
|
43 |
+
reference=remove_comments_and_docstrings(reference,'java')
|
44 |
+
except:
|
45 |
+
pass
|
46 |
+
|
47 |
+
cand_dfg = get_data_flow(candidate, parser)
|
48 |
+
ref_dfg = get_data_flow(reference, parser)
|
49 |
+
|
50 |
+
normalized_cand_dfg = normalize_dataflow(cand_dfg)
|
51 |
+
normalized_ref_dfg = normalize_dataflow(ref_dfg)
|
52 |
+
|
53 |
+
if len(normalized_ref_dfg) > 0:
|
54 |
+
total_count += len(normalized_ref_dfg)
|
55 |
+
for dataflow in normalized_ref_dfg:
|
56 |
+
if dataflow in normalized_cand_dfg:
|
57 |
+
match_count += 1
|
58 |
+
normalized_cand_dfg.remove(dataflow)
|
59 |
+
if total_count == 0:
|
60 |
+
# print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to 0. Please consider ignoring this score.")
|
61 |
+
# return 0
|
62 |
+
print("WARNING: There is no reference data-flows extracted from the whole corpus, and the data-flow match score degenerates to None")
|
63 |
+
return None
|
64 |
+
score = match_count / total_count
|
65 |
+
return score
|
66 |
+
|
67 |
+
def get_data_flow(code, parser):
|
68 |
+
try:
|
69 |
+
tree = parser[0].parse(bytes(code,'utf8'))
|
70 |
+
root_node = tree.root_node
|
71 |
+
tokens_index=tree_to_token_index(root_node)
|
72 |
+
code=code.split('\n')
|
73 |
+
code_tokens=[index_to_code_token(x,code) for x in tokens_index]
|
74 |
+
index_to_code={}
|
75 |
+
for idx,(index,code) in enumerate(zip(tokens_index,code_tokens)):
|
76 |
+
index_to_code[index]=(idx,code)
|
77 |
+
try:
|
78 |
+
DFG,_=parser[1](root_node,index_to_code,{})
|
79 |
+
except:
|
80 |
+
DFG=[]
|
81 |
+
DFG=sorted(DFG,key=lambda x:x[1])
|
82 |
+
indexs=set()
|
83 |
+
for d in DFG:
|
84 |
+
if len(d[-1])!=0:
|
85 |
+
indexs.add(d[1])
|
86 |
+
for x in d[-1]:
|
87 |
+
indexs.add(x)
|
88 |
+
new_DFG=[]
|
89 |
+
for d in DFG:
|
90 |
+
if d[1] in indexs:
|
91 |
+
new_DFG.append(d)
|
92 |
+
codes=code_tokens
|
93 |
+
dfg=new_DFG
|
94 |
+
except:
|
95 |
+
codes=code.split()
|
96 |
+
dfg=[]
|
97 |
+
#merge nodes
|
98 |
+
dic={}
|
99 |
+
for d in dfg:
|
100 |
+
if d[1] not in dic:
|
101 |
+
dic[d[1]]=d
|
102 |
+
else:
|
103 |
+
dic[d[1]]=(d[0],d[1],d[2],list(set(dic[d[1]][3]+d[3])),list(set(dic[d[1]][4]+d[4])))
|
104 |
+
DFG=[]
|
105 |
+
for d in dic:
|
106 |
+
DFG.append(dic[d])
|
107 |
+
dfg=DFG
|
108 |
+
return dfg
|
109 |
+
|
110 |
+
def normalize_dataflow_item(dataflow_item):
|
111 |
+
var_name = dataflow_item[0]
|
112 |
+
var_pos = dataflow_item[1]
|
113 |
+
relationship = dataflow_item[2]
|
114 |
+
par_vars_name_list = dataflow_item[3]
|
115 |
+
par_vars_pos_list = dataflow_item[4]
|
116 |
+
|
117 |
+
var_names = list(set(par_vars_name_list+[var_name]))
|
118 |
+
norm_names = {}
|
119 |
+
for i in range(len(var_names)):
|
120 |
+
norm_names[var_names[i]] = 'var_'+str(i)
|
121 |
+
|
122 |
+
norm_var_name = norm_names[var_name]
|
123 |
+
relationship = dataflow_item[2]
|
124 |
+
norm_par_vars_name_list = [norm_names[x] for x in par_vars_name_list]
|
125 |
+
|
126 |
+
return (norm_var_name, relationship, norm_par_vars_name_list)
|
127 |
+
|
128 |
+
def normalize_dataflow(dataflow):
|
129 |
+
var_dict = {}
|
130 |
+
i = 0
|
131 |
+
normalized_dataflow = []
|
132 |
+
for item in dataflow:
|
133 |
+
var_name = item[0]
|
134 |
+
relationship = item[2]
|
135 |
+
par_vars_name_list = item[3]
|
136 |
+
for name in par_vars_name_list:
|
137 |
+
if name not in var_dict:
|
138 |
+
var_dict[name] = 'var_'+str(i)
|
139 |
+
i += 1
|
140 |
+
if var_name not in var_dict:
|
141 |
+
var_dict[var_name] = 'var_'+str(i)
|
142 |
+
i+= 1
|
143 |
+
normalized_dataflow.append((var_dict[var_name], relationship, [var_dict[x] for x in par_vars_name_list]))
|
144 |
+
return normalized_dataflow
|
145 |
+
|
keywords.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beec11ed55f5a88fa77399b54f1127b50e9b393ad2a060fb0d8d7e3af16014a5
|
3 |
+
size 917
|
my_codebleu.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# -*- coding:utf-8 -*-
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
from . import bleu
|
8 |
+
from . import weighted_ngram_match
|
9 |
+
from . import syntax_match
|
10 |
+
from . import dataflow_match
|
11 |
+
|
12 |
+
|
13 |
+
def calc_codebleu(predictions, references, lang, tokenizer=None, params='0.25,0.25,0.25,0.25', kw_dir = ".", langso_dir = "."):
|
14 |
+
"""_summary_
|
15 |
+
|
16 |
+
Args:
|
17 |
+
predictions (list[str]): list of predictions
|
18 |
+
references (list[str]): list of lists with references
|
19 |
+
lang (str): ['java','js','c_sharp','php','go','python','ruby']
|
20 |
+
tokenizer (callable): tokenizer function, Defaults to lambda s: s.split()
|
21 |
+
params (str, optional): Defaults to '0.25,0.25,0.25,0.25'.
|
22 |
+
"""
|
23 |
+
|
24 |
+
alpha, beta, gamma, theta = [float(x) for x in params.split(',')]
|
25 |
+
|
26 |
+
# preprocess inputs
|
27 |
+
references = [[x.strip() for x in ref] for ref in references]
|
28 |
+
hypothesis = [x.strip() for x in predictions]
|
29 |
+
|
30 |
+
if not len(references) == len(hypothesis):
|
31 |
+
raise ValueError
|
32 |
+
|
33 |
+
# calculate ngram match (BLEU)
|
34 |
+
if tokenizer is None:
|
35 |
+
tokenizer = lambda s: s.split()
|
36 |
+
|
37 |
+
tokenized_hyps = [tokenizer(x) for x in hypothesis]
|
38 |
+
tokenized_refs = [[tokenizer(x) for x in reference]
|
39 |
+
for reference in references]
|
40 |
+
|
41 |
+
ngram_match_score = bleu.corpus_bleu(tokenized_refs, tokenized_hyps)
|
42 |
+
|
43 |
+
# calculate weighted ngram match
|
44 |
+
keywords = [x.strip() for x in open(kw_dir + '/keywords/' + lang +
|
45 |
+
'.txt', 'r', encoding='utf-8').readlines()]
|
46 |
+
|
47 |
+
def make_weights(reference_tokens, key_word_list):
|
48 |
+
return {token: 1 if token in key_word_list else 0.2
|
49 |
+
for token in reference_tokens}
|
50 |
+
tokenized_refs_with_weights = [[[reference_tokens, make_weights(reference_tokens, keywords)]
|
51 |
+
for reference_tokens in reference] for reference in tokenized_refs]
|
52 |
+
|
53 |
+
weighted_ngram_match_score = weighted_ngram_match.corpus_bleu(
|
54 |
+
tokenized_refs_with_weights, tokenized_hyps)
|
55 |
+
|
56 |
+
# calculate syntax match
|
57 |
+
syntax_match_score = syntax_match.corpus_syntax_match(
|
58 |
+
references, hypothesis, lang, langso_dir)
|
59 |
+
|
60 |
+
# calculate dataflow match
|
61 |
+
dataflow_match_score = dataflow_match.corpus_dataflow_match(
|
62 |
+
references, hypothesis, lang, langso_dir)
|
63 |
+
|
64 |
+
# print('ngram match: {0}, weighted ngram match: {1}, syntax_match: {2}, dataflow_match: {3}'.
|
65 |
+
# format(ngram_match_score, weighted_ngram_match_score, syntax_match_score, dataflow_match_score))
|
66 |
+
|
67 |
+
code_bleu_score = alpha*ngram_match_score\
|
68 |
+
+ beta*weighted_ngram_match_score\
|
69 |
+
+ gamma*syntax_match_score\
|
70 |
+
+ theta*(dataflow_match_score or 1)
|
71 |
+
|
72 |
+
# print('CodeBLEU score: ', code_bleu_score)
|
73 |
+
|
74 |
+
return {
|
75 |
+
'CodeBLEU': code_bleu_score,
|
76 |
+
'ngram_match_score': ngram_match_score,
|
77 |
+
'weighted_ngram_match_score': weighted_ngram_match_score,
|
78 |
+
'syntax_match_score': syntax_match_score,
|
79 |
+
'dataflow_match_score': dataflow_match_score
|
80 |
+
}
|
parser_DFG.py
ADDED
@@ -0,0 +1,1184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
from tree_sitter import Language, Parser
|
5 |
+
from .parser_utils import (remove_comments_and_docstrings,
|
6 |
+
tree_to_token_index,
|
7 |
+
index_to_code_token,
|
8 |
+
tree_to_variable_index)
|
9 |
+
|
10 |
+
|
11 |
+
def DFG_python(root_node,index_to_code,states):
|
12 |
+
assignment=['assignment','augmented_assignment','for_in_clause']
|
13 |
+
if_statement=['if_statement']
|
14 |
+
for_statement=['for_statement']
|
15 |
+
while_statement=['while_statement']
|
16 |
+
do_first_statement=['for_in_clause']
|
17 |
+
def_statement=['default_parameter']
|
18 |
+
states=states.copy()
|
19 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
20 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
21 |
+
if root_node.type==code:
|
22 |
+
return [],states
|
23 |
+
elif code in states:
|
24 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
25 |
+
else:
|
26 |
+
if root_node.type=='identifier':
|
27 |
+
states[code]=[idx]
|
28 |
+
return [(code,idx,'comesFrom',[],[])],states
|
29 |
+
elif root_node.type in def_statement:
|
30 |
+
name=root_node.child_by_field_name('name')
|
31 |
+
value=root_node.child_by_field_name('value')
|
32 |
+
DFG=[]
|
33 |
+
if value is None:
|
34 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
35 |
+
for index in indexs:
|
36 |
+
idx,code=index_to_code[index]
|
37 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
38 |
+
states[code]=[idx]
|
39 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
40 |
+
else:
|
41 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
42 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
43 |
+
temp,states=DFG_python(value,index_to_code,states)
|
44 |
+
DFG+=temp
|
45 |
+
for index1 in name_indexs:
|
46 |
+
idx1,code1=index_to_code[index1]
|
47 |
+
for index2 in value_indexs:
|
48 |
+
idx2,code2=index_to_code[index2]
|
49 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
50 |
+
states[code1]=[idx1]
|
51 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
52 |
+
elif root_node.type in assignment:
|
53 |
+
if root_node.type=='for_in_clause':
|
54 |
+
right_nodes=[root_node.children[-1]]
|
55 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
56 |
+
else:
|
57 |
+
if root_node.child_by_field_name('right') is None:
|
58 |
+
return [],states
|
59 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
60 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
61 |
+
if len(right_nodes)!=len(left_nodes):
|
62 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
63 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
64 |
+
if len(left_nodes)==0:
|
65 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
66 |
+
if len(right_nodes)==0:
|
67 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
68 |
+
DFG=[]
|
69 |
+
for node in right_nodes:
|
70 |
+
temp,states=DFG_python(node,index_to_code,states)
|
71 |
+
DFG+=temp
|
72 |
+
|
73 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
74 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
75 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
76 |
+
temp=[]
|
77 |
+
for token1_index in left_tokens_index:
|
78 |
+
idx1,code1=index_to_code[token1_index]
|
79 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
80 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
81 |
+
states[code1]=[idx1]
|
82 |
+
DFG+=temp
|
83 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
84 |
+
elif root_node.type in if_statement:
|
85 |
+
DFG=[]
|
86 |
+
current_states=states.copy()
|
87 |
+
others_states=[]
|
88 |
+
tag=False
|
89 |
+
if 'else' in root_node.type:
|
90 |
+
tag=True
|
91 |
+
for child in root_node.children:
|
92 |
+
if 'else' in child.type:
|
93 |
+
tag=True
|
94 |
+
if child.type not in ['elif_clause','else_clause']:
|
95 |
+
temp,current_states=DFG_python(child,index_to_code,current_states)
|
96 |
+
DFG+=temp
|
97 |
+
else:
|
98 |
+
temp,new_states=DFG_python(child,index_to_code,states)
|
99 |
+
DFG+=temp
|
100 |
+
others_states.append(new_states)
|
101 |
+
others_states.append(current_states)
|
102 |
+
if tag is False:
|
103 |
+
others_states.append(states)
|
104 |
+
new_states={}
|
105 |
+
for dic in others_states:
|
106 |
+
for key in dic:
|
107 |
+
if key not in new_states:
|
108 |
+
new_states[key]=dic[key].copy()
|
109 |
+
else:
|
110 |
+
new_states[key]+=dic[key]
|
111 |
+
for key in new_states:
|
112 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
113 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
114 |
+
elif root_node.type in for_statement:
|
115 |
+
DFG=[]
|
116 |
+
for i in range(2):
|
117 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
118 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
119 |
+
if len(right_nodes)!=len(left_nodes):
|
120 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
121 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
122 |
+
if len(left_nodes)==0:
|
123 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
124 |
+
if len(right_nodes)==0:
|
125 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
126 |
+
for node in right_nodes:
|
127 |
+
temp,states=DFG_python(node,index_to_code,states)
|
128 |
+
DFG+=temp
|
129 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
130 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
131 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
132 |
+
temp=[]
|
133 |
+
for token1_index in left_tokens_index:
|
134 |
+
idx1,code1=index_to_code[token1_index]
|
135 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
136 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
137 |
+
states[code1]=[idx1]
|
138 |
+
DFG+=temp
|
139 |
+
if root_node.children[-1].type=="block":
|
140 |
+
temp,states=DFG_python(root_node.children[-1],index_to_code,states)
|
141 |
+
DFG+=temp
|
142 |
+
dic={}
|
143 |
+
for x in DFG:
|
144 |
+
if (x[0],x[1],x[2]) not in dic:
|
145 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
146 |
+
else:
|
147 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
148 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
149 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
150 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
151 |
+
elif root_node.type in while_statement:
|
152 |
+
DFG=[]
|
153 |
+
for i in range(2):
|
154 |
+
for child in root_node.children:
|
155 |
+
temp,states=DFG_python(child,index_to_code,states)
|
156 |
+
DFG+=temp
|
157 |
+
dic={}
|
158 |
+
for x in DFG:
|
159 |
+
if (x[0],x[1],x[2]) not in dic:
|
160 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
161 |
+
else:
|
162 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
163 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
164 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
165 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
166 |
+
else:
|
167 |
+
DFG=[]
|
168 |
+
for child in root_node.children:
|
169 |
+
if child.type in do_first_statement:
|
170 |
+
temp,states=DFG_python(child,index_to_code,states)
|
171 |
+
DFG+=temp
|
172 |
+
for child in root_node.children:
|
173 |
+
if child.type not in do_first_statement:
|
174 |
+
temp,states=DFG_python(child,index_to_code,states)
|
175 |
+
DFG+=temp
|
176 |
+
|
177 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
178 |
+
|
179 |
+
|
180 |
+
def DFG_java(root_node,index_to_code,states):
|
181 |
+
assignment=['assignment_expression']
|
182 |
+
def_statement=['variable_declarator']
|
183 |
+
increment_statement=['update_expression']
|
184 |
+
if_statement=['if_statement','else']
|
185 |
+
for_statement=['for_statement']
|
186 |
+
enhanced_for_statement=['enhanced_for_statement']
|
187 |
+
while_statement=['while_statement']
|
188 |
+
do_first_statement=[]
|
189 |
+
states=states.copy()
|
190 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
191 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
192 |
+
if root_node.type==code:
|
193 |
+
return [],states
|
194 |
+
elif code in states:
|
195 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
196 |
+
else:
|
197 |
+
if root_node.type=='identifier':
|
198 |
+
states[code]=[idx]
|
199 |
+
return [(code,idx,'comesFrom',[],[])],states
|
200 |
+
elif root_node.type in def_statement:
|
201 |
+
name=root_node.child_by_field_name('name')
|
202 |
+
value=root_node.child_by_field_name('value')
|
203 |
+
DFG=[]
|
204 |
+
if value is None:
|
205 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
206 |
+
for index in indexs:
|
207 |
+
idx,code=index_to_code[index]
|
208 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
209 |
+
states[code]=[idx]
|
210 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
211 |
+
else:
|
212 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
213 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
214 |
+
temp,states=DFG_java(value,index_to_code,states)
|
215 |
+
DFG+=temp
|
216 |
+
for index1 in name_indexs:
|
217 |
+
idx1,code1=index_to_code[index1]
|
218 |
+
for index2 in value_indexs:
|
219 |
+
idx2,code2=index_to_code[index2]
|
220 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
221 |
+
states[code1]=[idx1]
|
222 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
223 |
+
elif root_node.type in assignment:
|
224 |
+
left_nodes=root_node.child_by_field_name('left')
|
225 |
+
right_nodes=root_node.child_by_field_name('right')
|
226 |
+
DFG=[]
|
227 |
+
temp,states=DFG_java(right_nodes,index_to_code,states)
|
228 |
+
DFG+=temp
|
229 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
230 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
231 |
+
for index1 in name_indexs:
|
232 |
+
idx1,code1=index_to_code[index1]
|
233 |
+
for index2 in value_indexs:
|
234 |
+
idx2,code2=index_to_code[index2]
|
235 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
236 |
+
states[code1]=[idx1]
|
237 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
238 |
+
elif root_node.type in increment_statement:
|
239 |
+
DFG=[]
|
240 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
241 |
+
for index1 in indexs:
|
242 |
+
idx1,code1=index_to_code[index1]
|
243 |
+
for index2 in indexs:
|
244 |
+
idx2,code2=index_to_code[index2]
|
245 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
246 |
+
states[code1]=[idx1]
|
247 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
248 |
+
elif root_node.type in if_statement:
|
249 |
+
DFG=[]
|
250 |
+
current_states=states.copy()
|
251 |
+
others_states=[]
|
252 |
+
flag=False
|
253 |
+
tag=False
|
254 |
+
if 'else' in root_node.type:
|
255 |
+
tag=True
|
256 |
+
for child in root_node.children:
|
257 |
+
if 'else' in child.type:
|
258 |
+
tag=True
|
259 |
+
if child.type not in if_statement and flag is False:
|
260 |
+
temp,current_states=DFG_java(child,index_to_code,current_states)
|
261 |
+
DFG+=temp
|
262 |
+
else:
|
263 |
+
flag=True
|
264 |
+
temp,new_states=DFG_java(child,index_to_code,states)
|
265 |
+
DFG+=temp
|
266 |
+
others_states.append(new_states)
|
267 |
+
others_states.append(current_states)
|
268 |
+
if tag is False:
|
269 |
+
others_states.append(states)
|
270 |
+
new_states={}
|
271 |
+
for dic in others_states:
|
272 |
+
for key in dic:
|
273 |
+
if key not in new_states:
|
274 |
+
new_states[key]=dic[key].copy()
|
275 |
+
else:
|
276 |
+
new_states[key]+=dic[key]
|
277 |
+
for key in new_states:
|
278 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
279 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
280 |
+
elif root_node.type in for_statement:
|
281 |
+
DFG=[]
|
282 |
+
for child in root_node.children:
|
283 |
+
temp,states=DFG_java(child,index_to_code,states)
|
284 |
+
DFG+=temp
|
285 |
+
flag=False
|
286 |
+
for child in root_node.children:
|
287 |
+
if flag:
|
288 |
+
temp,states=DFG_java(child,index_to_code,states)
|
289 |
+
DFG+=temp
|
290 |
+
elif child.type=="local_variable_declaration":
|
291 |
+
flag=True
|
292 |
+
dic={}
|
293 |
+
for x in DFG:
|
294 |
+
if (x[0],x[1],x[2]) not in dic:
|
295 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
296 |
+
else:
|
297 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
298 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
299 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
300 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
301 |
+
elif root_node.type in enhanced_for_statement:
|
302 |
+
name=root_node.child_by_field_name('name')
|
303 |
+
value=root_node.child_by_field_name('value')
|
304 |
+
body=root_node.child_by_field_name('body')
|
305 |
+
DFG=[]
|
306 |
+
for i in range(2):
|
307 |
+
temp,states=DFG_java(value,index_to_code,states)
|
308 |
+
DFG+=temp
|
309 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
310 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
311 |
+
for index1 in name_indexs:
|
312 |
+
idx1,code1=index_to_code[index1]
|
313 |
+
for index2 in value_indexs:
|
314 |
+
idx2,code2=index_to_code[index2]
|
315 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
316 |
+
states[code1]=[idx1]
|
317 |
+
temp,states=DFG_java(body,index_to_code,states)
|
318 |
+
DFG+=temp
|
319 |
+
dic={}
|
320 |
+
for x in DFG:
|
321 |
+
if (x[0],x[1],x[2]) not in dic:
|
322 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
323 |
+
else:
|
324 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
325 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
326 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
327 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
328 |
+
elif root_node.type in while_statement:
|
329 |
+
DFG=[]
|
330 |
+
for i in range(2):
|
331 |
+
for child in root_node.children:
|
332 |
+
temp,states=DFG_java(child,index_to_code,states)
|
333 |
+
DFG+=temp
|
334 |
+
dic={}
|
335 |
+
for x in DFG:
|
336 |
+
if (x[0],x[1],x[2]) not in dic:
|
337 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
338 |
+
else:
|
339 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
340 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
341 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
342 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
343 |
+
else:
|
344 |
+
DFG=[]
|
345 |
+
for child in root_node.children:
|
346 |
+
if child.type in do_first_statement:
|
347 |
+
temp,states=DFG_java(child,index_to_code,states)
|
348 |
+
DFG+=temp
|
349 |
+
for child in root_node.children:
|
350 |
+
if child.type not in do_first_statement:
|
351 |
+
temp,states=DFG_java(child,index_to_code,states)
|
352 |
+
DFG+=temp
|
353 |
+
|
354 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
355 |
+
|
356 |
+
def DFG_csharp(root_node,index_to_code,states):
|
357 |
+
assignment=['assignment_expression']
|
358 |
+
def_statement=['variable_declarator']
|
359 |
+
increment_statement=['postfix_unary_expression']
|
360 |
+
if_statement=['if_statement','else']
|
361 |
+
for_statement=['for_statement']
|
362 |
+
enhanced_for_statement=['for_each_statement']
|
363 |
+
while_statement=['while_statement']
|
364 |
+
do_first_statement=[]
|
365 |
+
states=states.copy()
|
366 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
367 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
368 |
+
if root_node.type==code:
|
369 |
+
return [],states
|
370 |
+
elif code in states:
|
371 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
372 |
+
else:
|
373 |
+
if root_node.type=='identifier':
|
374 |
+
states[code]=[idx]
|
375 |
+
return [(code,idx,'comesFrom',[],[])],states
|
376 |
+
elif root_node.type in def_statement:
|
377 |
+
if len(root_node.children)==2:
|
378 |
+
name=root_node.children[0]
|
379 |
+
value=root_node.children[1]
|
380 |
+
else:
|
381 |
+
name=root_node.children[0]
|
382 |
+
value=None
|
383 |
+
DFG=[]
|
384 |
+
if value is None:
|
385 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
386 |
+
for index in indexs:
|
387 |
+
idx,code=index_to_code[index]
|
388 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
389 |
+
states[code]=[idx]
|
390 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
391 |
+
else:
|
392 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
393 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
394 |
+
temp,states=DFG_csharp(value,index_to_code,states)
|
395 |
+
DFG+=temp
|
396 |
+
for index1 in name_indexs:
|
397 |
+
idx1,code1=index_to_code[index1]
|
398 |
+
for index2 in value_indexs:
|
399 |
+
idx2,code2=index_to_code[index2]
|
400 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
401 |
+
states[code1]=[idx1]
|
402 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
403 |
+
elif root_node.type in assignment:
|
404 |
+
left_nodes=root_node.child_by_field_name('left')
|
405 |
+
right_nodes=root_node.child_by_field_name('right')
|
406 |
+
DFG=[]
|
407 |
+
temp,states=DFG_csharp(right_nodes,index_to_code,states)
|
408 |
+
DFG+=temp
|
409 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
410 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
411 |
+
for index1 in name_indexs:
|
412 |
+
idx1,code1=index_to_code[index1]
|
413 |
+
for index2 in value_indexs:
|
414 |
+
idx2,code2=index_to_code[index2]
|
415 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
416 |
+
states[code1]=[idx1]
|
417 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
418 |
+
elif root_node.type in increment_statement:
|
419 |
+
DFG=[]
|
420 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
421 |
+
for index1 in indexs:
|
422 |
+
idx1,code1=index_to_code[index1]
|
423 |
+
for index2 in indexs:
|
424 |
+
idx2,code2=index_to_code[index2]
|
425 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
426 |
+
states[code1]=[idx1]
|
427 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
428 |
+
elif root_node.type in if_statement:
|
429 |
+
DFG=[]
|
430 |
+
current_states=states.copy()
|
431 |
+
others_states=[]
|
432 |
+
flag=False
|
433 |
+
tag=False
|
434 |
+
if 'else' in root_node.type:
|
435 |
+
tag=True
|
436 |
+
for child in root_node.children:
|
437 |
+
if 'else' in child.type:
|
438 |
+
tag=True
|
439 |
+
if child.type not in if_statement and flag is False:
|
440 |
+
temp,current_states=DFG_csharp(child,index_to_code,current_states)
|
441 |
+
DFG+=temp
|
442 |
+
else:
|
443 |
+
flag=True
|
444 |
+
temp,new_states=DFG_csharp(child,index_to_code,states)
|
445 |
+
DFG+=temp
|
446 |
+
others_states.append(new_states)
|
447 |
+
others_states.append(current_states)
|
448 |
+
if tag is False:
|
449 |
+
others_states.append(states)
|
450 |
+
new_states={}
|
451 |
+
for dic in others_states:
|
452 |
+
for key in dic:
|
453 |
+
if key not in new_states:
|
454 |
+
new_states[key]=dic[key].copy()
|
455 |
+
else:
|
456 |
+
new_states[key]+=dic[key]
|
457 |
+
for key in new_states:
|
458 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
459 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
460 |
+
elif root_node.type in for_statement:
|
461 |
+
DFG=[]
|
462 |
+
for child in root_node.children:
|
463 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
464 |
+
DFG+=temp
|
465 |
+
flag=False
|
466 |
+
for child in root_node.children:
|
467 |
+
if flag:
|
468 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
469 |
+
DFG+=temp
|
470 |
+
elif child.type=="local_variable_declaration":
|
471 |
+
flag=True
|
472 |
+
dic={}
|
473 |
+
for x in DFG:
|
474 |
+
if (x[0],x[1],x[2]) not in dic:
|
475 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
476 |
+
else:
|
477 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
478 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
479 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
480 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
481 |
+
elif root_node.type in enhanced_for_statement:
|
482 |
+
name=root_node.child_by_field_name('left')
|
483 |
+
value=root_node.child_by_field_name('right')
|
484 |
+
body=root_node.child_by_field_name('body')
|
485 |
+
DFG=[]
|
486 |
+
for i in range(2):
|
487 |
+
temp,states=DFG_csharp(value,index_to_code,states)
|
488 |
+
DFG+=temp
|
489 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
490 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
491 |
+
for index1 in name_indexs:
|
492 |
+
idx1,code1=index_to_code[index1]
|
493 |
+
for index2 in value_indexs:
|
494 |
+
idx2,code2=index_to_code[index2]
|
495 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
496 |
+
states[code1]=[idx1]
|
497 |
+
temp,states=DFG_csharp(body,index_to_code,states)
|
498 |
+
DFG+=temp
|
499 |
+
dic={}
|
500 |
+
for x in DFG:
|
501 |
+
if (x[0],x[1],x[2]) not in dic:
|
502 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
503 |
+
else:
|
504 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
505 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
506 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
507 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
508 |
+
elif root_node.type in while_statement:
|
509 |
+
DFG=[]
|
510 |
+
for i in range(2):
|
511 |
+
for child in root_node.children:
|
512 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
513 |
+
DFG+=temp
|
514 |
+
dic={}
|
515 |
+
for x in DFG:
|
516 |
+
if (x[0],x[1],x[2]) not in dic:
|
517 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
518 |
+
else:
|
519 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
520 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
521 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
522 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
523 |
+
else:
|
524 |
+
DFG=[]
|
525 |
+
for child in root_node.children:
|
526 |
+
if child.type in do_first_statement:
|
527 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
528 |
+
DFG+=temp
|
529 |
+
for child in root_node.children:
|
530 |
+
if child.type not in do_first_statement:
|
531 |
+
temp,states=DFG_csharp(child,index_to_code,states)
|
532 |
+
DFG+=temp
|
533 |
+
|
534 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
535 |
+
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
def DFG_ruby(root_node,index_to_code,states):
|
540 |
+
assignment=['assignment','operator_assignment']
|
541 |
+
if_statement=['if','elsif','else','unless','when']
|
542 |
+
for_statement=['for']
|
543 |
+
while_statement=['while_modifier','until']
|
544 |
+
do_first_statement=[]
|
545 |
+
def_statement=['keyword_parameter']
|
546 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
547 |
+
states=states.copy()
|
548 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
549 |
+
if root_node.type==code:
|
550 |
+
return [],states
|
551 |
+
elif code in states:
|
552 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
553 |
+
else:
|
554 |
+
if root_node.type=='identifier':
|
555 |
+
states[code]=[idx]
|
556 |
+
return [(code,idx,'comesFrom',[],[])],states
|
557 |
+
elif root_node.type in def_statement:
|
558 |
+
name=root_node.child_by_field_name('name')
|
559 |
+
value=root_node.child_by_field_name('value')
|
560 |
+
DFG=[]
|
561 |
+
if value is None:
|
562 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
563 |
+
for index in indexs:
|
564 |
+
idx,code=index_to_code[index]
|
565 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
566 |
+
states[code]=[idx]
|
567 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
568 |
+
else:
|
569 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
570 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
571 |
+
temp,states=DFG_ruby(value,index_to_code,states)
|
572 |
+
DFG+=temp
|
573 |
+
for index1 in name_indexs:
|
574 |
+
idx1,code1=index_to_code[index1]
|
575 |
+
for index2 in value_indexs:
|
576 |
+
idx2,code2=index_to_code[index2]
|
577 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
578 |
+
states[code1]=[idx1]
|
579 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
580 |
+
elif root_node.type in assignment:
|
581 |
+
left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=',']
|
582 |
+
right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=',']
|
583 |
+
if len(right_nodes)!=len(left_nodes):
|
584 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
585 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
586 |
+
if len(left_nodes)==0:
|
587 |
+
left_nodes=[root_node.child_by_field_name('left')]
|
588 |
+
if len(right_nodes)==0:
|
589 |
+
right_nodes=[root_node.child_by_field_name('right')]
|
590 |
+
if root_node.type=="operator_assignment":
|
591 |
+
left_nodes=[root_node.children[0]]
|
592 |
+
right_nodes=[root_node.children[-1]]
|
593 |
+
|
594 |
+
DFG=[]
|
595 |
+
for node in right_nodes:
|
596 |
+
temp,states=DFG_ruby(node,index_to_code,states)
|
597 |
+
DFG+=temp
|
598 |
+
|
599 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
600 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
601 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
602 |
+
temp=[]
|
603 |
+
for token1_index in left_tokens_index:
|
604 |
+
idx1,code1=index_to_code[token1_index]
|
605 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
606 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
607 |
+
states[code1]=[idx1]
|
608 |
+
DFG+=temp
|
609 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
610 |
+
elif root_node.type in if_statement:
|
611 |
+
DFG=[]
|
612 |
+
current_states=states.copy()
|
613 |
+
others_states=[]
|
614 |
+
tag=False
|
615 |
+
if 'else' in root_node.type:
|
616 |
+
tag=True
|
617 |
+
for child in root_node.children:
|
618 |
+
if 'else' in child.type:
|
619 |
+
tag=True
|
620 |
+
if child.type not in if_statement:
|
621 |
+
temp,current_states=DFG_ruby(child,index_to_code,current_states)
|
622 |
+
DFG+=temp
|
623 |
+
else:
|
624 |
+
temp,new_states=DFG_ruby(child,index_to_code,states)
|
625 |
+
DFG+=temp
|
626 |
+
others_states.append(new_states)
|
627 |
+
others_states.append(current_states)
|
628 |
+
if tag is False:
|
629 |
+
others_states.append(states)
|
630 |
+
new_states={}
|
631 |
+
for dic in others_states:
|
632 |
+
for key in dic:
|
633 |
+
if key not in new_states:
|
634 |
+
new_states[key]=dic[key].copy()
|
635 |
+
else:
|
636 |
+
new_states[key]+=dic[key]
|
637 |
+
for key in new_states:
|
638 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
639 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
640 |
+
elif root_node.type in for_statement:
|
641 |
+
DFG=[]
|
642 |
+
for i in range(2):
|
643 |
+
left_nodes=[root_node.child_by_field_name('pattern')]
|
644 |
+
right_nodes=[root_node.child_by_field_name('value')]
|
645 |
+
assert len(right_nodes)==len(left_nodes)
|
646 |
+
for node in right_nodes:
|
647 |
+
temp,states=DFG_ruby(node,index_to_code,states)
|
648 |
+
DFG+=temp
|
649 |
+
for left_node,right_node in zip(left_nodes,right_nodes):
|
650 |
+
left_tokens_index=tree_to_variable_index(left_node,index_to_code)
|
651 |
+
right_tokens_index=tree_to_variable_index(right_node,index_to_code)
|
652 |
+
temp=[]
|
653 |
+
for token1_index in left_tokens_index:
|
654 |
+
idx1,code1=index_to_code[token1_index]
|
655 |
+
temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index],
|
656 |
+
[index_to_code[x][0] for x in right_tokens_index]))
|
657 |
+
states[code1]=[idx1]
|
658 |
+
DFG+=temp
|
659 |
+
temp,states=DFG_ruby(root_node.child_by_field_name('body'),index_to_code,states)
|
660 |
+
DFG+=temp
|
661 |
+
dic={}
|
662 |
+
for x in DFG:
|
663 |
+
if (x[0],x[1],x[2]) not in dic:
|
664 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
665 |
+
else:
|
666 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
667 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
668 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
669 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
670 |
+
elif root_node.type in while_statement:
|
671 |
+
DFG=[]
|
672 |
+
for i in range(2):
|
673 |
+
for child in root_node.children:
|
674 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
675 |
+
DFG+=temp
|
676 |
+
dic={}
|
677 |
+
for x in DFG:
|
678 |
+
if (x[0],x[1],x[2]) not in dic:
|
679 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
680 |
+
else:
|
681 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
682 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
683 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
684 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
685 |
+
else:
|
686 |
+
DFG=[]
|
687 |
+
for child in root_node.children:
|
688 |
+
if child.type in do_first_statement:
|
689 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
690 |
+
DFG+=temp
|
691 |
+
for child in root_node.children:
|
692 |
+
if child.type not in do_first_statement:
|
693 |
+
temp,states=DFG_ruby(child,index_to_code,states)
|
694 |
+
DFG+=temp
|
695 |
+
|
696 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
697 |
+
|
698 |
+
def DFG_go(root_node,index_to_code,states):
|
699 |
+
assignment=['assignment_statement',]
|
700 |
+
def_statement=['var_spec']
|
701 |
+
increment_statement=['inc_statement']
|
702 |
+
if_statement=['if_statement','else']
|
703 |
+
for_statement=['for_statement']
|
704 |
+
enhanced_for_statement=[]
|
705 |
+
while_statement=[]
|
706 |
+
do_first_statement=[]
|
707 |
+
states=states.copy()
|
708 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
709 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
710 |
+
if root_node.type==code:
|
711 |
+
return [],states
|
712 |
+
elif code in states:
|
713 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
714 |
+
else:
|
715 |
+
if root_node.type=='identifier':
|
716 |
+
states[code]=[idx]
|
717 |
+
return [(code,idx,'comesFrom',[],[])],states
|
718 |
+
elif root_node.type in def_statement:
|
719 |
+
name=root_node.child_by_field_name('name')
|
720 |
+
value=root_node.child_by_field_name('value')
|
721 |
+
DFG=[]
|
722 |
+
if value is None:
|
723 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
724 |
+
for index in indexs:
|
725 |
+
idx,code=index_to_code[index]
|
726 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
727 |
+
states[code]=[idx]
|
728 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
729 |
+
else:
|
730 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
731 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
732 |
+
temp,states=DFG_go(value,index_to_code,states)
|
733 |
+
DFG+=temp
|
734 |
+
for index1 in name_indexs:
|
735 |
+
idx1,code1=index_to_code[index1]
|
736 |
+
for index2 in value_indexs:
|
737 |
+
idx2,code2=index_to_code[index2]
|
738 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
739 |
+
states[code1]=[idx1]
|
740 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
741 |
+
elif root_node.type in assignment:
|
742 |
+
left_nodes=root_node.child_by_field_name('left')
|
743 |
+
right_nodes=root_node.child_by_field_name('right')
|
744 |
+
DFG=[]
|
745 |
+
temp,states=DFG_go(right_nodes,index_to_code,states)
|
746 |
+
DFG+=temp
|
747 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
748 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
749 |
+
for index1 in name_indexs:
|
750 |
+
idx1,code1=index_to_code[index1]
|
751 |
+
for index2 in value_indexs:
|
752 |
+
idx2,code2=index_to_code[index2]
|
753 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
754 |
+
states[code1]=[idx1]
|
755 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
756 |
+
elif root_node.type in increment_statement:
|
757 |
+
DFG=[]
|
758 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
759 |
+
for index1 in indexs:
|
760 |
+
idx1,code1=index_to_code[index1]
|
761 |
+
for index2 in indexs:
|
762 |
+
idx2,code2=index_to_code[index2]
|
763 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
764 |
+
states[code1]=[idx1]
|
765 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
766 |
+
elif root_node.type in if_statement:
|
767 |
+
DFG=[]
|
768 |
+
current_states=states.copy()
|
769 |
+
others_states=[]
|
770 |
+
flag=False
|
771 |
+
tag=False
|
772 |
+
if 'else' in root_node.type:
|
773 |
+
tag=True
|
774 |
+
for child in root_node.children:
|
775 |
+
if 'else' in child.type:
|
776 |
+
tag=True
|
777 |
+
if child.type not in if_statement and flag is False:
|
778 |
+
temp,current_states=DFG_go(child,index_to_code,current_states)
|
779 |
+
DFG+=temp
|
780 |
+
else:
|
781 |
+
flag=True
|
782 |
+
temp,new_states=DFG_go(child,index_to_code,states)
|
783 |
+
DFG+=temp
|
784 |
+
others_states.append(new_states)
|
785 |
+
others_states.append(current_states)
|
786 |
+
if tag is False:
|
787 |
+
others_states.append(states)
|
788 |
+
new_states={}
|
789 |
+
for dic in others_states:
|
790 |
+
for key in dic:
|
791 |
+
if key not in new_states:
|
792 |
+
new_states[key]=dic[key].copy()
|
793 |
+
else:
|
794 |
+
new_states[key]+=dic[key]
|
795 |
+
for key in states:
|
796 |
+
if key not in new_states:
|
797 |
+
new_states[key]=states[key]
|
798 |
+
else:
|
799 |
+
new_states[key]+=states[key]
|
800 |
+
for key in new_states:
|
801 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
802 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
803 |
+
elif root_node.type in for_statement:
|
804 |
+
DFG=[]
|
805 |
+
for child in root_node.children:
|
806 |
+
temp,states=DFG_go(child,index_to_code,states)
|
807 |
+
DFG+=temp
|
808 |
+
flag=False
|
809 |
+
for child in root_node.children:
|
810 |
+
if flag:
|
811 |
+
temp,states=DFG_go(child,index_to_code,states)
|
812 |
+
DFG+=temp
|
813 |
+
elif child.type=="for_clause":
|
814 |
+
if child.child_by_field_name('update') is not None:
|
815 |
+
temp,states=DFG_go(child.child_by_field_name('update'),index_to_code,states)
|
816 |
+
DFG+=temp
|
817 |
+
flag=True
|
818 |
+
dic={}
|
819 |
+
for x in DFG:
|
820 |
+
if (x[0],x[1],x[2]) not in dic:
|
821 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
822 |
+
else:
|
823 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
824 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
825 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
826 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
827 |
+
else:
|
828 |
+
DFG=[]
|
829 |
+
for child in root_node.children:
|
830 |
+
if child.type in do_first_statement:
|
831 |
+
temp,states=DFG_go(child,index_to_code,states)
|
832 |
+
DFG+=temp
|
833 |
+
for child in root_node.children:
|
834 |
+
if child.type not in do_first_statement:
|
835 |
+
temp,states=DFG_go(child,index_to_code,states)
|
836 |
+
DFG+=temp
|
837 |
+
|
838 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
839 |
+
|
840 |
+
|
841 |
+
|
842 |
+
|
843 |
+
def DFG_php(root_node,index_to_code,states):
|
844 |
+
assignment=['assignment_expression','augmented_assignment_expression']
|
845 |
+
def_statement=['simple_parameter']
|
846 |
+
increment_statement=['update_expression']
|
847 |
+
if_statement=['if_statement','else_clause']
|
848 |
+
for_statement=['for_statement']
|
849 |
+
enhanced_for_statement=['foreach_statement']
|
850 |
+
while_statement=['while_statement']
|
851 |
+
do_first_statement=[]
|
852 |
+
states=states.copy()
|
853 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
854 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
855 |
+
if root_node.type==code:
|
856 |
+
return [],states
|
857 |
+
elif code in states:
|
858 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
859 |
+
else:
|
860 |
+
if root_node.type=='identifier':
|
861 |
+
states[code]=[idx]
|
862 |
+
return [(code,idx,'comesFrom',[],[])],states
|
863 |
+
elif root_node.type in def_statement:
|
864 |
+
name=root_node.child_by_field_name('name')
|
865 |
+
value=root_node.child_by_field_name('default_value')
|
866 |
+
DFG=[]
|
867 |
+
if value is None:
|
868 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
869 |
+
for index in indexs:
|
870 |
+
idx,code=index_to_code[index]
|
871 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
872 |
+
states[code]=[idx]
|
873 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
874 |
+
else:
|
875 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
876 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
877 |
+
temp,states=DFG_php(value,index_to_code,states)
|
878 |
+
DFG+=temp
|
879 |
+
for index1 in name_indexs:
|
880 |
+
idx1,code1=index_to_code[index1]
|
881 |
+
for index2 in value_indexs:
|
882 |
+
idx2,code2=index_to_code[index2]
|
883 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
884 |
+
states[code1]=[idx1]
|
885 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
886 |
+
elif root_node.type in assignment:
|
887 |
+
left_nodes=root_node.child_by_field_name('left')
|
888 |
+
right_nodes=root_node.child_by_field_name('right')
|
889 |
+
DFG=[]
|
890 |
+
temp,states=DFG_php(right_nodes,index_to_code,states)
|
891 |
+
DFG+=temp
|
892 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
893 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
894 |
+
for index1 in name_indexs:
|
895 |
+
idx1,code1=index_to_code[index1]
|
896 |
+
for index2 in value_indexs:
|
897 |
+
idx2,code2=index_to_code[index2]
|
898 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
899 |
+
states[code1]=[idx1]
|
900 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
901 |
+
elif root_node.type in increment_statement:
|
902 |
+
DFG=[]
|
903 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
904 |
+
for index1 in indexs:
|
905 |
+
idx1,code1=index_to_code[index1]
|
906 |
+
for index2 in indexs:
|
907 |
+
idx2,code2=index_to_code[index2]
|
908 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
909 |
+
states[code1]=[idx1]
|
910 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
911 |
+
elif root_node.type in if_statement:
|
912 |
+
DFG=[]
|
913 |
+
current_states=states.copy()
|
914 |
+
others_states=[]
|
915 |
+
flag=False
|
916 |
+
tag=False
|
917 |
+
if 'else' in root_node.type:
|
918 |
+
tag=True
|
919 |
+
for child in root_node.children:
|
920 |
+
if 'else' in child.type:
|
921 |
+
tag=True
|
922 |
+
if child.type not in if_statement and flag is False:
|
923 |
+
temp,current_states=DFG_php(child,index_to_code,current_states)
|
924 |
+
DFG+=temp
|
925 |
+
else:
|
926 |
+
flag=True
|
927 |
+
temp,new_states=DFG_php(child,index_to_code,states)
|
928 |
+
DFG+=temp
|
929 |
+
others_states.append(new_states)
|
930 |
+
others_states.append(current_states)
|
931 |
+
new_states={}
|
932 |
+
for dic in others_states:
|
933 |
+
for key in dic:
|
934 |
+
if key not in new_states:
|
935 |
+
new_states[key]=dic[key].copy()
|
936 |
+
else:
|
937 |
+
new_states[key]+=dic[key]
|
938 |
+
for key in states:
|
939 |
+
if key not in new_states:
|
940 |
+
new_states[key]=states[key]
|
941 |
+
else:
|
942 |
+
new_states[key]+=states[key]
|
943 |
+
for key in new_states:
|
944 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
945 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
946 |
+
elif root_node.type in for_statement:
|
947 |
+
DFG=[]
|
948 |
+
for child in root_node.children:
|
949 |
+
temp,states=DFG_php(child,index_to_code,states)
|
950 |
+
DFG+=temp
|
951 |
+
flag=False
|
952 |
+
for child in root_node.children:
|
953 |
+
if flag:
|
954 |
+
temp,states=DFG_php(child,index_to_code,states)
|
955 |
+
DFG+=temp
|
956 |
+
elif child.type=="assignment_expression":
|
957 |
+
flag=True
|
958 |
+
dic={}
|
959 |
+
for x in DFG:
|
960 |
+
if (x[0],x[1],x[2]) not in dic:
|
961 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
962 |
+
else:
|
963 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
964 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
965 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
966 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
967 |
+
elif root_node.type in enhanced_for_statement:
|
968 |
+
name=None
|
969 |
+
value=None
|
970 |
+
for child in root_node.children:
|
971 |
+
if child.type=='variable_name' and value is None:
|
972 |
+
value=child
|
973 |
+
elif child.type=='variable_name' and name is None:
|
974 |
+
name=child
|
975 |
+
break
|
976 |
+
body=root_node.child_by_field_name('body')
|
977 |
+
DFG=[]
|
978 |
+
for i in range(2):
|
979 |
+
temp,states=DFG_php(value,index_to_code,states)
|
980 |
+
DFG+=temp
|
981 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
982 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
983 |
+
for index1 in name_indexs:
|
984 |
+
idx1,code1=index_to_code[index1]
|
985 |
+
for index2 in value_indexs:
|
986 |
+
idx2,code2=index_to_code[index2]
|
987 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
988 |
+
states[code1]=[idx1]
|
989 |
+
temp,states=DFG_php(body,index_to_code,states)
|
990 |
+
DFG+=temp
|
991 |
+
dic={}
|
992 |
+
for x in DFG:
|
993 |
+
if (x[0],x[1],x[2]) not in dic:
|
994 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
995 |
+
else:
|
996 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
997 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
998 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
999 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1000 |
+
elif root_node.type in while_statement:
|
1001 |
+
DFG=[]
|
1002 |
+
for i in range(2):
|
1003 |
+
for child in root_node.children:
|
1004 |
+
temp,states=DFG_php(child,index_to_code,states)
|
1005 |
+
DFG+=temp
|
1006 |
+
dic={}
|
1007 |
+
for x in DFG:
|
1008 |
+
if (x[0],x[1],x[2]) not in dic:
|
1009 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1010 |
+
else:
|
1011 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1012 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1013 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1014 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1015 |
+
else:
|
1016 |
+
DFG=[]
|
1017 |
+
for child in root_node.children:
|
1018 |
+
if child.type in do_first_statement:
|
1019 |
+
temp,states=DFG_php(child,index_to_code,states)
|
1020 |
+
DFG+=temp
|
1021 |
+
for child in root_node.children:
|
1022 |
+
if child.type not in do_first_statement:
|
1023 |
+
temp,states=DFG_php(child,index_to_code,states)
|
1024 |
+
DFG+=temp
|
1025 |
+
|
1026 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1027 |
+
|
1028 |
+
|
1029 |
+
def DFG_javascript(root_node,index_to_code,states):
|
1030 |
+
assignment=['assignment_pattern','augmented_assignment_expression']
|
1031 |
+
def_statement=['variable_declarator']
|
1032 |
+
increment_statement=['update_expression']
|
1033 |
+
if_statement=['if_statement','else']
|
1034 |
+
for_statement=['for_statement']
|
1035 |
+
enhanced_for_statement=[]
|
1036 |
+
while_statement=['while_statement']
|
1037 |
+
do_first_statement=[]
|
1038 |
+
states=states.copy()
|
1039 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
1040 |
+
idx,code=index_to_code[(root_node.start_point,root_node.end_point)]
|
1041 |
+
if root_node.type==code:
|
1042 |
+
return [],states
|
1043 |
+
elif code in states:
|
1044 |
+
return [(code,idx,'comesFrom',[code],states[code].copy())],states
|
1045 |
+
else:
|
1046 |
+
if root_node.type=='identifier':
|
1047 |
+
states[code]=[idx]
|
1048 |
+
return [(code,idx,'comesFrom',[],[])],states
|
1049 |
+
elif root_node.type in def_statement:
|
1050 |
+
name=root_node.child_by_field_name('name')
|
1051 |
+
value=root_node.child_by_field_name('value')
|
1052 |
+
DFG=[]
|
1053 |
+
if value is None:
|
1054 |
+
indexs=tree_to_variable_index(name,index_to_code)
|
1055 |
+
for index in indexs:
|
1056 |
+
idx,code=index_to_code[index]
|
1057 |
+
DFG.append((code,idx,'comesFrom',[],[]))
|
1058 |
+
states[code]=[idx]
|
1059 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1060 |
+
else:
|
1061 |
+
name_indexs=tree_to_variable_index(name,index_to_code)
|
1062 |
+
value_indexs=tree_to_variable_index(value,index_to_code)
|
1063 |
+
temp,states=DFG_javascript(value,index_to_code,states)
|
1064 |
+
DFG+=temp
|
1065 |
+
for index1 in name_indexs:
|
1066 |
+
idx1,code1=index_to_code[index1]
|
1067 |
+
for index2 in value_indexs:
|
1068 |
+
idx2,code2=index_to_code[index2]
|
1069 |
+
DFG.append((code1,idx1,'comesFrom',[code2],[idx2]))
|
1070 |
+
states[code1]=[idx1]
|
1071 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1072 |
+
elif root_node.type in assignment:
|
1073 |
+
left_nodes=root_node.child_by_field_name('left')
|
1074 |
+
right_nodes=root_node.child_by_field_name('right')
|
1075 |
+
DFG=[]
|
1076 |
+
temp,states=DFG_javascript(right_nodes,index_to_code,states)
|
1077 |
+
DFG+=temp
|
1078 |
+
name_indexs=tree_to_variable_index(left_nodes,index_to_code)
|
1079 |
+
value_indexs=tree_to_variable_index(right_nodes,index_to_code)
|
1080 |
+
for index1 in name_indexs:
|
1081 |
+
idx1,code1=index_to_code[index1]
|
1082 |
+
for index2 in value_indexs:
|
1083 |
+
idx2,code2=index_to_code[index2]
|
1084 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1085 |
+
states[code1]=[idx1]
|
1086 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1087 |
+
elif root_node.type in increment_statement:
|
1088 |
+
DFG=[]
|
1089 |
+
indexs=tree_to_variable_index(root_node,index_to_code)
|
1090 |
+
for index1 in indexs:
|
1091 |
+
idx1,code1=index_to_code[index1]
|
1092 |
+
for index2 in indexs:
|
1093 |
+
idx2,code2=index_to_code[index2]
|
1094 |
+
DFG.append((code1,idx1,'computedFrom',[code2],[idx2]))
|
1095 |
+
states[code1]=[idx1]
|
1096 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1097 |
+
elif root_node.type in if_statement:
|
1098 |
+
DFG=[]
|
1099 |
+
current_states=states.copy()
|
1100 |
+
others_states=[]
|
1101 |
+
flag=False
|
1102 |
+
tag=False
|
1103 |
+
if 'else' in root_node.type:
|
1104 |
+
tag=True
|
1105 |
+
for child in root_node.children:
|
1106 |
+
if 'else' in child.type:
|
1107 |
+
tag=True
|
1108 |
+
if child.type not in if_statement and flag is False:
|
1109 |
+
temp,current_states=DFG_javascript(child,index_to_code,current_states)
|
1110 |
+
DFG+=temp
|
1111 |
+
else:
|
1112 |
+
flag=True
|
1113 |
+
temp,new_states=DFG_javascript(child,index_to_code,states)
|
1114 |
+
DFG+=temp
|
1115 |
+
others_states.append(new_states)
|
1116 |
+
others_states.append(current_states)
|
1117 |
+
if tag is False:
|
1118 |
+
others_states.append(states)
|
1119 |
+
new_states={}
|
1120 |
+
for dic in others_states:
|
1121 |
+
for key in dic:
|
1122 |
+
if key not in new_states:
|
1123 |
+
new_states[key]=dic[key].copy()
|
1124 |
+
else:
|
1125 |
+
new_states[key]+=dic[key]
|
1126 |
+
for key in states:
|
1127 |
+
if key not in new_states:
|
1128 |
+
new_states[key]=states[key]
|
1129 |
+
else:
|
1130 |
+
new_states[key]+=states[key]
|
1131 |
+
for key in new_states:
|
1132 |
+
new_states[key]=sorted(list(set(new_states[key])))
|
1133 |
+
return sorted(DFG,key=lambda x:x[1]),new_states
|
1134 |
+
elif root_node.type in for_statement:
|
1135 |
+
DFG=[]
|
1136 |
+
for child in root_node.children:
|
1137 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
1138 |
+
DFG+=temp
|
1139 |
+
flag=False
|
1140 |
+
for child in root_node.children:
|
1141 |
+
if flag:
|
1142 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
1143 |
+
DFG+=temp
|
1144 |
+
elif child.type=="variable_declaration":
|
1145 |
+
flag=True
|
1146 |
+
dic={}
|
1147 |
+
for x in DFG:
|
1148 |
+
if (x[0],x[1],x[2]) not in dic:
|
1149 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1150 |
+
else:
|
1151 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1152 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1153 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1154 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1155 |
+
elif root_node.type in while_statement:
|
1156 |
+
DFG=[]
|
1157 |
+
for i in range(2):
|
1158 |
+
for child in root_node.children:
|
1159 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
1160 |
+
DFG+=temp
|
1161 |
+
dic={}
|
1162 |
+
for x in DFG:
|
1163 |
+
if (x[0],x[1],x[2]) not in dic:
|
1164 |
+
dic[(x[0],x[1],x[2])]=[x[3],x[4]]
|
1165 |
+
else:
|
1166 |
+
dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3]))
|
1167 |
+
dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4])))
|
1168 |
+
DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])]
|
1169 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1170 |
+
else:
|
1171 |
+
DFG=[]
|
1172 |
+
for child in root_node.children:
|
1173 |
+
if child.type in do_first_statement:
|
1174 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
1175 |
+
DFG+=temp
|
1176 |
+
for child in root_node.children:
|
1177 |
+
if child.type not in do_first_statement:
|
1178 |
+
temp,states=DFG_javascript(child,index_to_code,states)
|
1179 |
+
DFG+=temp
|
1180 |
+
|
1181 |
+
return sorted(DFG,key=lambda x:x[1]),states
|
1182 |
+
|
1183 |
+
|
1184 |
+
|
parser_utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import re
|
5 |
+
from io import StringIO
|
6 |
+
import tokenize
|
7 |
+
def remove_comments_and_docstrings(source,lang):
|
8 |
+
if lang in ['python']:
|
9 |
+
"""
|
10 |
+
Returns 'source' minus comments and docstrings.
|
11 |
+
"""
|
12 |
+
io_obj = StringIO(source)
|
13 |
+
out = ""
|
14 |
+
prev_toktype = tokenize.INDENT
|
15 |
+
last_lineno = -1
|
16 |
+
last_col = 0
|
17 |
+
for tok in tokenize.generate_tokens(io_obj.readline):
|
18 |
+
token_type = tok[0]
|
19 |
+
token_string = tok[1]
|
20 |
+
start_line, start_col = tok[2]
|
21 |
+
end_line, end_col = tok[3]
|
22 |
+
ltext = tok[4]
|
23 |
+
if start_line > last_lineno:
|
24 |
+
last_col = 0
|
25 |
+
if start_col > last_col:
|
26 |
+
out += (" " * (start_col - last_col))
|
27 |
+
# Remove comments:
|
28 |
+
if token_type == tokenize.COMMENT:
|
29 |
+
pass
|
30 |
+
# This series of conditionals removes docstrings:
|
31 |
+
elif token_type == tokenize.STRING:
|
32 |
+
if prev_toktype != tokenize.INDENT:
|
33 |
+
# This is likely a docstring; double-check we're not inside an operator:
|
34 |
+
if prev_toktype != tokenize.NEWLINE:
|
35 |
+
if start_col > 0:
|
36 |
+
out += token_string
|
37 |
+
else:
|
38 |
+
out += token_string
|
39 |
+
prev_toktype = token_type
|
40 |
+
last_col = end_col
|
41 |
+
last_lineno = end_line
|
42 |
+
temp=[]
|
43 |
+
for x in out.split('\n'):
|
44 |
+
if x.strip()!="":
|
45 |
+
temp.append(x)
|
46 |
+
return '\n'.join(temp)
|
47 |
+
elif lang in ['ruby']:
|
48 |
+
return source
|
49 |
+
else:
|
50 |
+
def replacer(match):
|
51 |
+
s = match.group(0)
|
52 |
+
if s.startswith('/'):
|
53 |
+
return " " # note: a space and not an empty string
|
54 |
+
else:
|
55 |
+
return s
|
56 |
+
pattern = re.compile(
|
57 |
+
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
58 |
+
re.DOTALL | re.MULTILINE
|
59 |
+
)
|
60 |
+
temp=[]
|
61 |
+
for x in re.sub(pattern, replacer, source).split('\n'):
|
62 |
+
if x.strip()!="":
|
63 |
+
temp.append(x)
|
64 |
+
return '\n'.join(temp)
|
65 |
+
|
66 |
+
def tree_to_token_index(root_node):
|
67 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
68 |
+
return [(root_node.start_point,root_node.end_point)]
|
69 |
+
else:
|
70 |
+
code_tokens=[]
|
71 |
+
for child in root_node.children:
|
72 |
+
code_tokens+=tree_to_token_index(child)
|
73 |
+
return code_tokens
|
74 |
+
|
75 |
+
def tree_to_variable_index(root_node,index_to_code):
|
76 |
+
if (len(root_node.children)==0 or root_node.type in ['string_literal','string','character_literal']) and root_node.type!='comment':
|
77 |
+
index=(root_node.start_point,root_node.end_point)
|
78 |
+
_,code=index_to_code[index]
|
79 |
+
if root_node.type!=code:
|
80 |
+
return [(root_node.start_point,root_node.end_point)]
|
81 |
+
else:
|
82 |
+
return []
|
83 |
+
else:
|
84 |
+
code_tokens=[]
|
85 |
+
for child in root_node.children:
|
86 |
+
code_tokens+=tree_to_variable_index(child,index_to_code)
|
87 |
+
return code_tokens
|
88 |
+
|
89 |
+
def index_to_code_token(index,code):
|
90 |
+
start_point=index[0]
|
91 |
+
end_point=index[1]
|
92 |
+
if start_point[0]==end_point[0]:
|
93 |
+
s=code[start_point[0]][start_point[1]:end_point[1]]
|
94 |
+
else:
|
95 |
+
s=""
|
96 |
+
s+=code[start_point[0]][start_point[1]:]
|
97 |
+
for i in range(start_point[0]+1,end_point[0]):
|
98 |
+
s+=code[i]
|
99 |
+
s+=code[end_point[0]][:end_point[1]]
|
100 |
+
return s
|
101 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
evaluate
|
2 |
+
tree-sitter==0.2.2
|
3 |
+
gradio
|
syntax_match.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
from .parser_DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
|
6 |
+
from .parser_utils import (remove_comments_and_docstrings,
|
7 |
+
tree_to_token_index,
|
8 |
+
index_to_code_token,
|
9 |
+
tree_to_variable_index)
|
10 |
+
from tree_sitter import Language, Parser
|
11 |
+
|
12 |
+
dfg_function={
|
13 |
+
'python':DFG_python,
|
14 |
+
'java':DFG_java,
|
15 |
+
'ruby':DFG_ruby,
|
16 |
+
'go':DFG_go,
|
17 |
+
'php':DFG_php,
|
18 |
+
'javascript':DFG_javascript,
|
19 |
+
'c_sharp':DFG_csharp,
|
20 |
+
}
|
21 |
+
|
22 |
+
def calc_syntax_match(references, candidate, lang):
|
23 |
+
return corpus_syntax_match([references], [candidate], lang)
|
24 |
+
|
25 |
+
def corpus_syntax_match(references, candidates, lang, langso_dir):
|
26 |
+
# print(os.listdir())
|
27 |
+
JAVA_LANGUAGE = Language(langso_dir, lang)
|
28 |
+
parser = Parser()
|
29 |
+
parser.set_language(JAVA_LANGUAGE)
|
30 |
+
match_count = 0
|
31 |
+
total_count = 0
|
32 |
+
|
33 |
+
for i in range(len(candidates)):
|
34 |
+
references_sample = references[i]
|
35 |
+
candidate = candidates[i]
|
36 |
+
for reference in references_sample:
|
37 |
+
try:
|
38 |
+
candidate=remove_comments_and_docstrings(candidate,'java')
|
39 |
+
except:
|
40 |
+
pass
|
41 |
+
try:
|
42 |
+
reference=remove_comments_and_docstrings(reference,'java')
|
43 |
+
except:
|
44 |
+
pass
|
45 |
+
|
46 |
+
candidate_tree = parser.parse(bytes(candidate,'utf8')).root_node
|
47 |
+
|
48 |
+
reference_tree = parser.parse(bytes(reference,'utf8')).root_node
|
49 |
+
|
50 |
+
def get_all_sub_trees(root_node):
|
51 |
+
node_stack = []
|
52 |
+
sub_tree_sexp_list = []
|
53 |
+
depth = 1
|
54 |
+
node_stack.append([root_node, depth])
|
55 |
+
while len(node_stack) != 0:
|
56 |
+
cur_node, cur_depth = node_stack.pop()
|
57 |
+
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
|
58 |
+
for child_node in cur_node.children:
|
59 |
+
if len(child_node.children) != 0:
|
60 |
+
depth = cur_depth + 1
|
61 |
+
node_stack.append([child_node, depth])
|
62 |
+
return sub_tree_sexp_list
|
63 |
+
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
|
64 |
+
ref_sexps = get_all_sub_trees(reference_tree)
|
65 |
+
|
66 |
+
# print(cand_sexps)
|
67 |
+
# print(ref_sexps)
|
68 |
+
|
69 |
+
for sub_tree, depth in ref_sexps:
|
70 |
+
if sub_tree in cand_sexps:
|
71 |
+
match_count += 1
|
72 |
+
total_count += len(ref_sexps)
|
73 |
+
|
74 |
+
score = match_count / total_count
|
75 |
+
return score
|
tests.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
test_cases = [
|
2 |
+
{
|
3 |
+
"predictions": [0, 0],
|
4 |
+
"references": [1, 1],
|
5 |
+
"result": {"metric_score": 0}
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"predictions": [1, 1],
|
9 |
+
"references": [1, 1],
|
10 |
+
"result": {"metric_score": 1}
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"predictions": [1, 0],
|
14 |
+
"references": [1, 1],
|
15 |
+
"result": {"metric_score": 0.5}
|
16 |
+
}
|
17 |
+
]
|
utils.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Utility functions
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2020 NLTK Project
|
4 |
+
# Author: Steven Bird <stevenbird1@gmail.com>
|
5 |
+
# URL: <http://nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from itertools import chain
|
9 |
+
|
10 |
+
def pad_sequence(
|
11 |
+
sequence,
|
12 |
+
n,
|
13 |
+
pad_left=False,
|
14 |
+
pad_right=False,
|
15 |
+
left_pad_symbol=None,
|
16 |
+
right_pad_symbol=None,
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
Returns a padded sequence of items before ngram extraction.
|
20 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
21 |
+
['<s>', 1, 2, 3, 4, 5, '</s>']
|
22 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
23 |
+
['<s>', 1, 2, 3, 4, 5]
|
24 |
+
>>> list(pad_sequence([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
25 |
+
[1, 2, 3, 4, 5, '</s>']
|
26 |
+
:param sequence: the source data to be padded
|
27 |
+
:type sequence: sequence or iter
|
28 |
+
:param n: the degree of the ngrams
|
29 |
+
:type n: int
|
30 |
+
:param pad_left: whether the ngrams should be left-padded
|
31 |
+
:type pad_left: bool
|
32 |
+
:param pad_right: whether the ngrams should be right-padded
|
33 |
+
:type pad_right: bool
|
34 |
+
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
35 |
+
:type left_pad_symbol: any
|
36 |
+
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
37 |
+
:type right_pad_symbol: any
|
38 |
+
:rtype: sequence or iter
|
39 |
+
"""
|
40 |
+
sequence = iter(sequence)
|
41 |
+
if pad_left:
|
42 |
+
sequence = chain((left_pad_symbol,) * (n - 1), sequence)
|
43 |
+
if pad_right:
|
44 |
+
sequence = chain(sequence, (right_pad_symbol,) * (n - 1))
|
45 |
+
return sequence
|
46 |
+
|
47 |
+
|
48 |
+
# add a flag to pad the sequence so we get peripheral ngrams?
|
49 |
+
|
50 |
+
|
51 |
+
def ngrams(
|
52 |
+
sequence,
|
53 |
+
n,
|
54 |
+
pad_left=False,
|
55 |
+
pad_right=False,
|
56 |
+
left_pad_symbol=None,
|
57 |
+
right_pad_symbol=None,
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Return the ngrams generated from a sequence of items, as an iterator.
|
61 |
+
For example:
|
62 |
+
>>> from nltk.util import ngrams
|
63 |
+
>>> list(ngrams([1,2,3,4,5], 3))
|
64 |
+
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
65 |
+
Wrap with list for a list version of this function. Set pad_left
|
66 |
+
or pad_right to true in order to get additional ngrams:
|
67 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
|
68 |
+
[(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]
|
69 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>'))
|
70 |
+
[(1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
71 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>'))
|
72 |
+
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5)]
|
73 |
+
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_symbol='<s>', right_pad_symbol='</s>'))
|
74 |
+
[('<s>', 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, '</s>')]
|
75 |
+
:param sequence: the source data to be converted into ngrams
|
76 |
+
:type sequence: sequence or iter
|
77 |
+
:param n: the degree of the ngrams
|
78 |
+
:type n: int
|
79 |
+
:param pad_left: whether the ngrams should be left-padded
|
80 |
+
:type pad_left: bool
|
81 |
+
:param pad_right: whether the ngrams should be right-padded
|
82 |
+
:type pad_right: bool
|
83 |
+
:param left_pad_symbol: the symbol to use for left padding (default is None)
|
84 |
+
:type left_pad_symbol: any
|
85 |
+
:param right_pad_symbol: the symbol to use for right padding (default is None)
|
86 |
+
:type right_pad_symbol: any
|
87 |
+
:rtype: sequence or iter
|
88 |
+
"""
|
89 |
+
sequence = pad_sequence(
|
90 |
+
sequence, n, pad_left, pad_right, left_pad_symbol, right_pad_symbol
|
91 |
+
)
|
92 |
+
|
93 |
+
history = []
|
94 |
+
while n > 1:
|
95 |
+
# PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
|
96 |
+
try:
|
97 |
+
next_item = next(sequence)
|
98 |
+
except StopIteration:
|
99 |
+
# no more data, terminate the generator
|
100 |
+
return
|
101 |
+
history.append(next_item)
|
102 |
+
n -= 1
|
103 |
+
for item in sequence:
|
104 |
+
history.append(item)
|
105 |
+
yield tuple(history)
|
106 |
+
del history[0]
|
weighted_ngram_match.py
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Microsoft Corporation.
|
3 |
+
# Licensed under the MIT license.
|
4 |
+
|
5 |
+
# Natural Language Toolkit: BLEU Score
|
6 |
+
#
|
7 |
+
# Copyright (C) 2001-2020 NLTK Project
|
8 |
+
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
9 |
+
# Contributors: BjΓΆrn Mattsson, Dmitrijs Milajevs, Liling Tan
|
10 |
+
# URL: <http://nltk.org/>
|
11 |
+
# For license information, see LICENSE.TXT
|
12 |
+
|
13 |
+
"""BLEU score implementation."""
|
14 |
+
|
15 |
+
import math
|
16 |
+
import sys
|
17 |
+
from fractions import Fraction
|
18 |
+
import warnings
|
19 |
+
from collections import Counter
|
20 |
+
|
21 |
+
from .utils import ngrams
|
22 |
+
import pdb
|
23 |
+
|
24 |
+
|
25 |
+
def sentence_bleu(
|
26 |
+
references,
|
27 |
+
hypothesis,
|
28 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
29 |
+
smoothing_function=None,
|
30 |
+
auto_reweigh=False,
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
Calculate BLEU score (Bilingual Evaluation Understudy) from
|
34 |
+
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
|
35 |
+
"BLEU: a method for automatic evaluation of machine translation."
|
36 |
+
In Proceedings of ACL. http://www.aclweb.org/anthology/P02-1040.pdf
|
37 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
38 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
39 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
40 |
+
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
|
41 |
+
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
|
42 |
+
... 'that', 'party', 'direct']
|
43 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
44 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
45 |
+
... 'heed', 'Party', 'commands']
|
46 |
+
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
47 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
48 |
+
... 'being', 'under', 'the', 'command', 'of', 'the',
|
49 |
+
... 'Party']
|
50 |
+
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
51 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
52 |
+
... 'of', 'the', 'party']
|
53 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS
|
54 |
+
0.5045...
|
55 |
+
If there is no ngrams overlap for any order of n-grams, BLEU returns the
|
56 |
+
value 0. This is because the precision for the order of n-grams without
|
57 |
+
overlap is 0, and the geometric mean in the final BLEU score computation
|
58 |
+
multiplies the 0 with the precision of other n-grams. This results in 0
|
59 |
+
(independently of the precision of the othe n-gram orders). The following
|
60 |
+
example has zero 3-gram and 4-gram overlaps:
|
61 |
+
>>> round(sentence_bleu([reference1, reference2, reference3], hypothesis2),4) # doctest: +ELLIPSIS
|
62 |
+
0.0
|
63 |
+
To avoid this harsh behaviour when no ngram overlaps are found a smoothing
|
64 |
+
function can be used.
|
65 |
+
>>> chencherry = SmoothingFunction()
|
66 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis2,
|
67 |
+
... smoothing_function=chencherry.method1) # doctest: +ELLIPSIS
|
68 |
+
0.0370...
|
69 |
+
The default BLEU calculates a score for up to 4-grams using uniform
|
70 |
+
weights (this is called BLEU-4). To evaluate your translations with
|
71 |
+
higher/lower order ngrams, use customized weights. E.g. when accounting
|
72 |
+
for up to 5-grams with uniform weights (this is called BLEU-5) use:
|
73 |
+
>>> weights = (1./5., 1./5., 1./5., 1./5., 1./5.)
|
74 |
+
>>> sentence_bleu([reference1, reference2, reference3], hypothesis1, weights) # doctest: +ELLIPSIS
|
75 |
+
0.3920...
|
76 |
+
:param references: reference sentences
|
77 |
+
:type references: list(list(str))
|
78 |
+
:param hypothesis: a hypothesis sentence
|
79 |
+
:type hypothesis: list(str)
|
80 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
81 |
+
:type weights: list(float)
|
82 |
+
:param smoothing_function:
|
83 |
+
:type smoothing_function: SmoothingFunction
|
84 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
85 |
+
:type auto_reweigh: bool
|
86 |
+
:return: The sentence-level BLEU score.
|
87 |
+
:rtype: float
|
88 |
+
"""
|
89 |
+
return corpus_bleu(
|
90 |
+
[references], [hypothesis], weights, smoothing_function, auto_reweigh
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def corpus_bleu(
|
95 |
+
list_of_references,
|
96 |
+
hypotheses,
|
97 |
+
weights=(0.25, 0.25, 0.25, 0.25),
|
98 |
+
smoothing_function=None,
|
99 |
+
auto_reweigh=False,
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
|
103 |
+
the hypotheses and their respective references.
|
104 |
+
Instead of averaging the sentence level BLEU scores (i.e. marco-average
|
105 |
+
precision), the original BLEU metric (Papineni et al. 2002) accounts for
|
106 |
+
the micro-average precision (i.e. summing the numerators and denominators
|
107 |
+
for each hypothesis-reference(s) pairs before the division).
|
108 |
+
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
|
109 |
+
... 'ensures', 'that', 'the', 'military', 'always',
|
110 |
+
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
|
111 |
+
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
|
112 |
+
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
|
113 |
+
... 'heed', 'Party', 'commands']
|
114 |
+
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
|
115 |
+
... 'guarantees', 'the', 'military', 'forces', 'always',
|
116 |
+
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
|
117 |
+
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
|
118 |
+
... 'army', 'always', 'to', 'heed', 'the', 'directions',
|
119 |
+
... 'of', 'the', 'party']
|
120 |
+
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
|
121 |
+
... 'interested', 'in', 'world', 'history']
|
122 |
+
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
|
123 |
+
... 'because', 'he', 'read', 'the', 'book']
|
124 |
+
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
|
125 |
+
>>> hypotheses = [hyp1, hyp2]
|
126 |
+
>>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
|
127 |
+
0.5920...
|
128 |
+
The example below show that corpus_bleu() is different from averaging
|
129 |
+
sentence_bleu() for hypotheses
|
130 |
+
>>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
|
131 |
+
>>> score2 = sentence_bleu([ref2a], hyp2)
|
132 |
+
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
|
133 |
+
0.6223...
|
134 |
+
:param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
|
135 |
+
:type list_of_references: list(list(list(str)))
|
136 |
+
:param hypotheses: a list of hypothesis sentences
|
137 |
+
:type hypotheses: list(list(str))
|
138 |
+
:param weights: weights for unigrams, bigrams, trigrams and so on
|
139 |
+
:type weights: list(float)
|
140 |
+
:param smoothing_function:
|
141 |
+
:type smoothing_function: SmoothingFunction
|
142 |
+
:param auto_reweigh: Option to re-normalize the weights uniformly.
|
143 |
+
:type auto_reweigh: bool
|
144 |
+
:return: The corpus-level BLEU score.
|
145 |
+
:rtype: float
|
146 |
+
"""
|
147 |
+
# Before proceeding to compute BLEU, perform sanity checks.
|
148 |
+
|
149 |
+
p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
|
150 |
+
p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
|
151 |
+
hyp_lengths, ref_lengths = 0, 0
|
152 |
+
|
153 |
+
assert len(list_of_references) == len(hypotheses), (
|
154 |
+
"The number of hypotheses and their reference(s) should be the " "same "
|
155 |
+
)
|
156 |
+
|
157 |
+
# Iterate through each hypothesis and their corresponding references.
|
158 |
+
for references, hypothesis in zip(list_of_references, hypotheses):
|
159 |
+
# For each order of ngram, calculate the numerator and
|
160 |
+
# denominator for the corpus-level modified precision.
|
161 |
+
for i, _ in enumerate(weights, start=1):
|
162 |
+
p_i_numeraotr, p_i_denominator = modified_recall(references, hypothesis, i)
|
163 |
+
p_numerators[i] += p_i_numeraotr
|
164 |
+
p_denominators[i] += p_i_denominator
|
165 |
+
|
166 |
+
# Calculate the hypothesis length and the closest reference length.
|
167 |
+
# Adds them to the corpus-level hypothesis and reference counts.
|
168 |
+
hyp_len = len(hypothesis)
|
169 |
+
hyp_lengths += hyp_len
|
170 |
+
ref_lengths += closest_ref_length(references, hyp_len)
|
171 |
+
|
172 |
+
# Calculate corpus-level brevity penalty.
|
173 |
+
bp = brevity_penalty(ref_lengths, hyp_lengths)
|
174 |
+
|
175 |
+
# Uniformly re-weighting based on maximum hypothesis lengths if largest
|
176 |
+
# order of n-grams < 4 and weights is set at default.
|
177 |
+
if auto_reweigh:
|
178 |
+
if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
|
179 |
+
weights = (1 / hyp_lengths,) * hyp_lengths
|
180 |
+
|
181 |
+
# Collects the various recall values for the different ngram orders.
|
182 |
+
p_n = [
|
183 |
+
(p_numerators[i], p_denominators[i])
|
184 |
+
for i, _ in enumerate(weights, start=1)
|
185 |
+
]
|
186 |
+
|
187 |
+
# Returns 0 if there's no matching n-grams
|
188 |
+
# We only need to check for p_numerators[1] == 0, since if there's
|
189 |
+
# no unigrams, there won't be any higher order ngrams.
|
190 |
+
if p_numerators[1] == 0:
|
191 |
+
return 0
|
192 |
+
|
193 |
+
# If there's no smoothing, set use method0 from SmoothinFunction class.
|
194 |
+
if not smoothing_function:
|
195 |
+
smoothing_function = SmoothingFunction().method1
|
196 |
+
# Smoothen the modified precision.
|
197 |
+
# Note: smoothing_function() may convert values into floats;
|
198 |
+
# it tries to retain the Fraction object as much as the
|
199 |
+
# smoothing method allows.
|
200 |
+
p_n = smoothing_function(
|
201 |
+
p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
|
202 |
+
)
|
203 |
+
# pdb.set_trace()
|
204 |
+
s = (w_i * math.log(p_i[0]/p_i[1]) for w_i, p_i in zip(weights, p_n))
|
205 |
+
s = bp * math.exp(math.fsum(s))
|
206 |
+
return s
|
207 |
+
|
208 |
+
|
209 |
+
def modified_recall(references, hypothesis, n):
|
210 |
+
"""
|
211 |
+
Calculate modified ngram recall.
|
212 |
+
:param references: A list of reference translations.
|
213 |
+
:type references: list(list(str))
|
214 |
+
:param hypothesis: A hypothesis translation.
|
215 |
+
:type hypothesis: list(str)
|
216 |
+
:param n: The ngram order.
|
217 |
+
:type n: int
|
218 |
+
:return: BLEU's modified precision for the nth order ngram.
|
219 |
+
:rtype: Fraction
|
220 |
+
"""
|
221 |
+
# Extracts all ngrams in hypothesis
|
222 |
+
# Set an empty Counter if hypothesis is empty.
|
223 |
+
# pdb.set_trace()
|
224 |
+
numerator = 0
|
225 |
+
denominator = 0
|
226 |
+
|
227 |
+
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
|
228 |
+
# Extract a union of references' counts.
|
229 |
+
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
|
230 |
+
max_counts = {}
|
231 |
+
for reference_and_weights in references:
|
232 |
+
reference = reference_and_weights[0]
|
233 |
+
weights = reference_and_weights[1]
|
234 |
+
reference_counts = (
|
235 |
+
Counter(ngrams(reference, n)) if len(reference) >= n else Counter()
|
236 |
+
)
|
237 |
+
# for ngram in reference_counts:
|
238 |
+
# max_counts[ngram] = max(max_counts.get(ngram, 0), counts[ngram])
|
239 |
+
clipped_counts = {
|
240 |
+
ngram: min(count, counts[ngram]) for ngram, count in reference_counts.items()
|
241 |
+
}
|
242 |
+
# reweight
|
243 |
+
if n == 1 and len(weights) == len(reference_counts):
|
244 |
+
def weighted_sum(weights, counts):
|
245 |
+
sum_counts = 0
|
246 |
+
for ngram, count in counts.items():
|
247 |
+
sum_counts += count * (weights[ngram[0]] if ngram[0] in weights else 1)
|
248 |
+
return sum_counts
|
249 |
+
|
250 |
+
numerator += weighted_sum(weights, clipped_counts)
|
251 |
+
denominator += max(1, weighted_sum(weights, reference_counts))
|
252 |
+
|
253 |
+
else:
|
254 |
+
numerator += sum(clipped_counts.values())
|
255 |
+
denominator += max(1, sum(reference_counts.values()))
|
256 |
+
|
257 |
+
# # Assigns the intersection between hypothesis and references' counts.
|
258 |
+
# clipped_counts = {
|
259 |
+
# ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()
|
260 |
+
# }
|
261 |
+
|
262 |
+
# numerator += sum(clipped_counts.values())
|
263 |
+
# # Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
|
264 |
+
# # Usually this happens when the ngram order is > len(reference).
|
265 |
+
# denominator += max(1, sum(counts.values()))
|
266 |
+
|
267 |
+
#return Fraction(numerator, denominator, _normalize=False)
|
268 |
+
return numerator, denominator
|
269 |
+
|
270 |
+
|
271 |
+
def closest_ref_length(references, hyp_len):
|
272 |
+
"""
|
273 |
+
This function finds the reference that is the closest length to the
|
274 |
+
hypothesis. The closest reference length is referred to as *r* variable
|
275 |
+
from the brevity penalty formula in Papineni et. al. (2002)
|
276 |
+
:param references: A list of reference translations.
|
277 |
+
:type references: list(list(str))
|
278 |
+
:param hyp_len: The length of the hypothesis.
|
279 |
+
:type hyp_len: int
|
280 |
+
:return: The length of the reference that's closest to the hypothesis.
|
281 |
+
:rtype: int
|
282 |
+
"""
|
283 |
+
ref_lens = (len(reference) for reference in references)
|
284 |
+
closest_ref_len = min(
|
285 |
+
ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)
|
286 |
+
)
|
287 |
+
return closest_ref_len
|
288 |
+
|
289 |
+
|
290 |
+
def brevity_penalty(closest_ref_len, hyp_len):
|
291 |
+
"""
|
292 |
+
Calculate brevity penalty.
|
293 |
+
As the modified n-gram precision still has the problem from the short
|
294 |
+
length sentence, brevity penalty is used to modify the overall BLEU
|
295 |
+
score according to length.
|
296 |
+
An example from the paper. There are three references with length 12, 15
|
297 |
+
and 17. And a concise hypothesis of the length 12. The brevity penalty is 1.
|
298 |
+
>>> reference1 = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
299 |
+
>>> reference2 = list('aaaaaaaaaaaaaaa') # i.e. ['a'] * 15
|
300 |
+
>>> reference3 = list('aaaaaaaaaaaaaaaaa') # i.e. ['a'] * 17
|
301 |
+
>>> hypothesis = list('aaaaaaaaaaaa') # i.e. ['a'] * 12
|
302 |
+
>>> references = [reference1, reference2, reference3]
|
303 |
+
>>> hyp_len = len(hypothesis)
|
304 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
305 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
306 |
+
1.0
|
307 |
+
In case a hypothesis translation is shorter than the references, penalty is
|
308 |
+
applied.
|
309 |
+
>>> references = [['a'] * 28, ['a'] * 28]
|
310 |
+
>>> hypothesis = ['a'] * 12
|
311 |
+
>>> hyp_len = len(hypothesis)
|
312 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
313 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
314 |
+
0.2635971381157267
|
315 |
+
The length of the closest reference is used to compute the penalty. If the
|
316 |
+
length of a hypothesis is 12, and the reference lengths are 13 and 2, the
|
317 |
+
penalty is applied because the hypothesis length (12) is less then the
|
318 |
+
closest reference length (13).
|
319 |
+
>>> references = [['a'] * 13, ['a'] * 2]
|
320 |
+
>>> hypothesis = ['a'] * 12
|
321 |
+
>>> hyp_len = len(hypothesis)
|
322 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
323 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
324 |
+
0.9200...
|
325 |
+
The brevity penalty doesn't depend on reference order. More importantly,
|
326 |
+
when two reference sentences are at the same distance, the shortest
|
327 |
+
reference sentence length is used.
|
328 |
+
>>> references = [['a'] * 13, ['a'] * 11]
|
329 |
+
>>> hypothesis = ['a'] * 12
|
330 |
+
>>> hyp_len = len(hypothesis)
|
331 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
332 |
+
>>> bp1 = brevity_penalty(closest_ref_len, hyp_len)
|
333 |
+
>>> hyp_len = len(hypothesis)
|
334 |
+
>>> closest_ref_len = closest_ref_length(reversed(references), hyp_len)
|
335 |
+
>>> bp2 = brevity_penalty(closest_ref_len, hyp_len)
|
336 |
+
>>> bp1 == bp2 == 1
|
337 |
+
True
|
338 |
+
A test example from mteval-v13a.pl (starting from the line 705):
|
339 |
+
>>> references = [['a'] * 11, ['a'] * 8]
|
340 |
+
>>> hypothesis = ['a'] * 7
|
341 |
+
>>> hyp_len = len(hypothesis)
|
342 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
343 |
+
>>> brevity_penalty(closest_ref_len, hyp_len) # doctest: +ELLIPSIS
|
344 |
+
0.8668...
|
345 |
+
>>> references = [['a'] * 11, ['a'] * 8, ['a'] * 6, ['a'] * 7]
|
346 |
+
>>> hypothesis = ['a'] * 7
|
347 |
+
>>> hyp_len = len(hypothesis)
|
348 |
+
>>> closest_ref_len = closest_ref_length(references, hyp_len)
|
349 |
+
>>> brevity_penalty(closest_ref_len, hyp_len)
|
350 |
+
1.0
|
351 |
+
:param hyp_len: The length of the hypothesis for a single sentence OR the
|
352 |
+
sum of all the hypotheses' lengths for a corpus
|
353 |
+
:type hyp_len: int
|
354 |
+
:param closest_ref_len: The length of the closest reference for a single
|
355 |
+
hypothesis OR the sum of all the closest references for every hypotheses.
|
356 |
+
:type closest_ref_len: int
|
357 |
+
:return: BLEU's brevity penalty.
|
358 |
+
:rtype: float
|
359 |
+
"""
|
360 |
+
if hyp_len > closest_ref_len:
|
361 |
+
return 1
|
362 |
+
# If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0
|
363 |
+
elif hyp_len == 0:
|
364 |
+
return 0
|
365 |
+
else:
|
366 |
+
return math.exp(1 - closest_ref_len / hyp_len)
|
367 |
+
|
368 |
+
|
369 |
+
class SmoothingFunction:
|
370 |
+
"""
|
371 |
+
This is an implementation of the smoothing techniques
|
372 |
+
for segment-level BLEU scores that was presented in
|
373 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
374 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
375 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(self, epsilon=0.1, alpha=5, k=5):
|
379 |
+
"""
|
380 |
+
This will initialize the parameters required for the various smoothing
|
381 |
+
techniques, the default values are set to the numbers used in the
|
382 |
+
experiments from Chen and Cherry (2014).
|
383 |
+
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures',
|
384 |
+
... 'that', 'the', 'military', 'always', 'obeys', 'the',
|
385 |
+
... 'commands', 'of', 'the', 'party']
|
386 |
+
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures',
|
387 |
+
... 'that', 'the', 'military', 'will', 'forever', 'heed',
|
388 |
+
... 'Party', 'commands']
|
389 |
+
>>> chencherry = SmoothingFunction()
|
390 |
+
>>> print(sentence_bleu([reference1], hypothesis1)) # doctest: +ELLIPSIS
|
391 |
+
0.4118...
|
392 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method0)) # doctest: +ELLIPSIS
|
393 |
+
0.4118...
|
394 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method1)) # doctest: +ELLIPSIS
|
395 |
+
0.4118...
|
396 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method2)) # doctest: +ELLIPSIS
|
397 |
+
0.4489...
|
398 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method3)) # doctest: +ELLIPSIS
|
399 |
+
0.4118...
|
400 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method4)) # doctest: +ELLIPSIS
|
401 |
+
0.4118...
|
402 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method5)) # doctest: +ELLIPSIS
|
403 |
+
0.4905...
|
404 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method6)) # doctest: +ELLIPSIS
|
405 |
+
0.4135...
|
406 |
+
>>> print(sentence_bleu([reference1], hypothesis1, smoothing_function=chencherry.method7)) # doctest: +ELLIPSIS
|
407 |
+
0.4905...
|
408 |
+
:param epsilon: the epsilon value use in method 1
|
409 |
+
:type epsilon: float
|
410 |
+
:param alpha: the alpha value use in method 6
|
411 |
+
:type alpha: int
|
412 |
+
:param k: the k value use in method 4
|
413 |
+
:type k: int
|
414 |
+
"""
|
415 |
+
self.epsilon = epsilon
|
416 |
+
self.alpha = alpha
|
417 |
+
self.k = k
|
418 |
+
|
419 |
+
def method0(self, p_n, *args, **kwargs):
|
420 |
+
"""
|
421 |
+
No smoothing.
|
422 |
+
"""
|
423 |
+
p_n_new = []
|
424 |
+
for i, p_i in enumerate(p_n):
|
425 |
+
if p_i[0] != 0:
|
426 |
+
p_n_new.append(p_i)
|
427 |
+
else:
|
428 |
+
_msg = str(
|
429 |
+
"\nThe hypothesis contains 0 counts of {}-gram overlaps.\n"
|
430 |
+
"Therefore the BLEU score evaluates to 0, independently of\n"
|
431 |
+
"how many N-gram overlaps of lower order it contains.\n"
|
432 |
+
"Consider using lower n-gram order or use "
|
433 |
+
"SmoothingFunction()"
|
434 |
+
).format(i + 1)
|
435 |
+
warnings.warn(_msg)
|
436 |
+
# When numerator==0 where denonminator==0 or !=0, the result
|
437 |
+
# for the precision score should be equal to 0 or undefined.
|
438 |
+
# Due to BLEU geometric mean computation in logarithm space,
|
439 |
+
# we we need to take the return sys.float_info.min such that
|
440 |
+
# math.log(sys.float_info.min) returns a 0 precision score.
|
441 |
+
p_n_new.append(sys.float_info.min)
|
442 |
+
return p_n_new
|
443 |
+
|
444 |
+
def method1(self, p_n, *args, **kwargs):
|
445 |
+
"""
|
446 |
+
Smoothing method 1: Add *epsilon* counts to precision with 0 counts.
|
447 |
+
"""
|
448 |
+
return [
|
449 |
+
((p_i[0] + self.epsilon), p_i[1])
|
450 |
+
if p_i[0] == 0
|
451 |
+
else p_i
|
452 |
+
for p_i in p_n
|
453 |
+
]
|
454 |
+
|
455 |
+
def method2(self, p_n, *args, **kwargs):
|
456 |
+
"""
|
457 |
+
Smoothing method 2: Add 1 to both numerator and denominator from
|
458 |
+
Chin-Yew Lin and Franz Josef Och (2004) Automatic evaluation of
|
459 |
+
machine translation quality using longest common subsequence and
|
460 |
+
skip-bigram statistics. In ACL04.
|
461 |
+
"""
|
462 |
+
return [
|
463 |
+
(p_i[0] + 1, p_i[1] + 1)
|
464 |
+
for p_i in p_n
|
465 |
+
]
|
466 |
+
|
467 |
+
def method3(self, p_n, *args, **kwargs):
|
468 |
+
"""
|
469 |
+
Smoothing method 3: NIST geometric sequence smoothing
|
470 |
+
The smoothing is computed by taking 1 / ( 2^k ), instead of 0, for each
|
471 |
+
precision score whose matching n-gram count is null.
|
472 |
+
k is 1 for the first 'n' value for which the n-gram match count is null/
|
473 |
+
For example, if the text contains:
|
474 |
+
- one 2-gram match
|
475 |
+
- and (consequently) two 1-gram matches
|
476 |
+
the n-gram count for each individual precision score would be:
|
477 |
+
- n=1 => prec_count = 2 (two unigrams)
|
478 |
+
- n=2 => prec_count = 1 (one bigram)
|
479 |
+
- n=3 => prec_count = 1/2 (no trigram, taking 'smoothed' value of 1 / ( 2^k ), with k=1)
|
480 |
+
- n=4 => prec_count = 1/4 (no fourgram, taking 'smoothed' value of 1 / ( 2^k ), with k=2)
|
481 |
+
"""
|
482 |
+
incvnt = 1 # From the mteval-v13a.pl, it's referred to as k.
|
483 |
+
for i, p_i in enumerate(p_n):
|
484 |
+
if p_i.numerator == 0:
|
485 |
+
p_n[i] = 1 / (2 ** incvnt * p_i.denominator)
|
486 |
+
incvnt += 1
|
487 |
+
return p_n
|
488 |
+
|
489 |
+
def method4(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
490 |
+
"""
|
491 |
+
Smoothing method 4:
|
492 |
+
Shorter translations may have inflated precision values due to having
|
493 |
+
smaller denominators; therefore, we give them proportionally
|
494 |
+
smaller smoothed counts. Instead of scaling to 1/(2^k), Chen and Cherry
|
495 |
+
suggests dividing by 1/ln(len(T)), where T is the length of the translation.
|
496 |
+
"""
|
497 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
498 |
+
for i, p_i in enumerate(p_n):
|
499 |
+
if p_i.numerator == 0 and hyp_len != 0:
|
500 |
+
incvnt = i + 1 * self.k / math.log(
|
501 |
+
hyp_len
|
502 |
+
) # Note that this K is different from the K from NIST.
|
503 |
+
p_n[i] = incvnt / p_i.denominator
|
504 |
+
return p_n
|
505 |
+
|
506 |
+
def method5(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
507 |
+
"""
|
508 |
+
Smoothing method 5:
|
509 |
+
The matched counts for similar values of n should be similar. To a
|
510 |
+
calculate the n-gram matched count, it averages the nβ1, n and n+1 gram
|
511 |
+
matched counts.
|
512 |
+
"""
|
513 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
514 |
+
m = {}
|
515 |
+
# Requires an precision value for an addition ngram order.
|
516 |
+
p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)]
|
517 |
+
m[-1] = p_n[0] + 1
|
518 |
+
for i, p_i in enumerate(p_n):
|
519 |
+
p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3
|
520 |
+
m[i] = p_n[i]
|
521 |
+
return p_n
|
522 |
+
|
523 |
+
def method6(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
524 |
+
"""
|
525 |
+
Smoothing method 6:
|
526 |
+
Interpolates the maximum likelihood estimate of the precision *p_n* with
|
527 |
+
a prior estimate *pi0*. The prior is estimated by assuming that the ratio
|
528 |
+
between pn and pnβ1 will be the same as that between pnβ1 and pnβ2; from
|
529 |
+
Gao and He (2013) Training MRF-Based Phrase Translation Models using
|
530 |
+
Gradient Ascent. In NAACL.
|
531 |
+
"""
|
532 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
533 |
+
# This smoothing only works when p_1 and p_2 is non-zero.
|
534 |
+
# Raise an error with an appropriate message when the input is too short
|
535 |
+
# to use this smoothing technique.
|
536 |
+
assert p_n[2], "This smoothing method requires non-zero precision for bigrams."
|
537 |
+
for i, p_i in enumerate(p_n):
|
538 |
+
if i in [0, 1]: # Skips the first 2 orders of ngrams.
|
539 |
+
continue
|
540 |
+
else:
|
541 |
+
pi0 = 0 if p_n[i - 2] == 0 else p_n[i - 1] ** 2 / p_n[i - 2]
|
542 |
+
# No. of ngrams in translation that matches the reference.
|
543 |
+
m = p_i.numerator
|
544 |
+
# No. of ngrams in translation.
|
545 |
+
l = sum(1 for _ in ngrams(hypothesis, i + 1))
|
546 |
+
# Calculates the interpolated precision.
|
547 |
+
p_n[i] = (m + self.alpha * pi0) / (l + self.alpha)
|
548 |
+
return p_n
|
549 |
+
|
550 |
+
def method7(self, p_n, references, hypothesis, hyp_len=None, *args, **kwargs):
|
551 |
+
"""
|
552 |
+
Smoothing method 7:
|
553 |
+
Interpolates methods 4 and 5.
|
554 |
+
"""
|
555 |
+
hyp_len = hyp_len if hyp_len else len(hypothesis)
|
556 |
+
p_n = self.method4(p_n, references, hypothesis, hyp_len)
|
557 |
+
p_n = self.method5(p_n, references, hypothesis, hyp_len)
|
558 |
+
return p_n
|