duyduong9htv commited on
Commit
8b3e556
·
1 Parent(s): 4b6071c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -4
app.py CHANGED
@@ -1,8 +1,36 @@
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import ViTImageProcessor, ViTForImageClassification
2
+ import torch
3
  import gradio as gr
4
 
5
+ feature_extractor = ViTImageProcessor.from_pretrained("model_artifacts")
6
+ model = ViTForImageClassification.from_pretrained("model_artifacts")
7
 
8
+ labels = ['Chevrolet Equinox',
9
+ 'Chevrolet Silverado 1500',
10
+ 'Ford Escape',
11
+ 'Ford Explorer',
12
+ 'Ford F-150',
13
+ 'GMC Sierra 1500',
14
+ 'Honda CR-V',
15
+ 'Jeep Compass',
16
+ 'Jeep Grand Cherokee',
17
+ 'Jeep Wrangler',
18
+ 'Mazda CX-5',
19
+ 'Nissan Rogue',
20
+ 'RAM 1500',
21
+ 'RAM 2500',
22
+ 'Toyota Camry']
23
 
24
+ def classify(im):
25
+ features = feature_extractor(im, return_tensors='pt')
26
+ logits = model(features["pixel_values"])[-1]
27
+ probability = torch.nn.functional.softmax(logits, dim=-1)
28
+ probs = probability[0].detach().numpy()
29
+ confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
30
+ return confidences
31
+
32
+
33
+ description = "Simple car recognition model"
34
+ interface = gr.Interface(fn=classify, inputs="image", outputs="label", title="Car classification demo :)", description=description )
35
+
36
+ interface.launch(debug=True)