comment_filter / app.py
duwing's picture
Update app.py
fdb1d41 verified
raw
history blame
2.55 kB
import streamlit as st
import tensorflow as tf
import numpy as np
import pandas as pd
from transformers import *
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
import os
from tensorflow.python.client import device_lib
SEQ_LEN = 128
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
def create_sentiment_bert():
# ๋ฒ„ํŠธ pretrained ๋ชจ๋ธ ๋กœ๋“œ
model = TFBertModel.from_pretrained('bert-base-multilingual-cased')
# ํ† ํฐ ์ธํ’‹, ๋งˆ์Šคํฌ ์ธํ’‹, ์„ธ๊ทธ๋จผํŠธ ์ธํ’‹ ์ •์˜
token_inputs = tf.keras.layers.Input((SEQ_LEN,), dtype=tf.int32, name='input_word_ids')
mask_inputs = tf.keras.layers.Input((SEQ_LEN,), dtype=tf.int32, name='input_masks')
segment_inputs = tf.keras.layers.Input((SEQ_LEN,), dtype=tf.int32, name='input_segment')
# ์ธํ’‹์ด [ํ† ํฐ, ๋งˆ์Šคํฌ, ์„ธ๊ทธ๋จผํŠธ]์ธ ๋ชจ๋ธ ์ •์˜
bert_outputs = model([token_inputs, mask_inputs, segment_inputs])
bert_outputs = bert_outputs[1]
sentiment_first = tf.keras.layers.Dense(1, activation='sigmoid', kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02))(bert_outputs)
sentiment_model = tf.keras.Model([token_inputs, mask_inputs, segment_inputs], sentiment_first)
sentiment_model.compile(loss=tf.keras.losses.BinaryCrossentropy(), metrics = ['accuracy'])
return sentiment_model
def sentence_convert_data(data):
global tokenizer
tokens, masks, segments = [], [], []
token = tokenizer.encode(data, max_length=SEQ_LEN, truncation=True, padding='max_length')
num_zeros = token.count(0)
mask = [1]*(SEQ_LEN-num_zeros) + [0]*num_zeros
segment = [0]*SEQ_LEN
tokens.append(token)
segments.append(segment)
masks.append(mask)
tokens = np.array(tokens)
masks = np.array(masks)
segments = np.array(segments)
return [tokens, masks, segments]
def movie_evaluation_predict(sentence):
data_x = sentence_convert_data(sentence)
predict = sentiment_model.predict(data_x)
predict_value = np.ravel(predict)
predict_answer = np.round(predict_value,0).item()
print(predict_value)
if predict_answer == 0:
st.write("(๋ถ€์ • ํ™•๋ฅ  : %.2f) ๋ถ€์ •์ ์ธ ์˜ํ™” ํ‰๊ฐ€์ž…๋‹ˆ๋‹ค." % (1.0-predict_value))
elif predict_answer == 1:
st.write("(๊ธ์ • ํ™•๋ฅ  : %.2f) ๊ธ์ •์ ์ธ ์˜ํ™” ํ‰๊ฐ€์ž…๋‹ˆ๋‹ค." % predict_value)
sentiment_model = create_sentiment_bert()
movie_evaluation_predict("๋ณด๋˜๊ฑฐ๋ผ ๊ณ„์†๋ณด๊ณ ์žˆ๋Š”๋ฐ ์ „๊ฐœ๋„ ๋Š๋ฆฌ๊ณ  ์ฃผ์ธ๊ณต์ธ ์€ํฌ๋Š” ํ•œ๋‘์ปท ๋‚˜์˜ค๋ฉด์„œ ์†Œ๊ทน์ ์ธ๋ชจ์Šต์— ")