app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,22 @@
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Input data
|
4 |
x1 = torch.tensor([50, 60, 70, 80, 90])
|
@@ -59,4 +77,4 @@ while iter_count < max_iters:
|
|
59 |
# Print the final values of Theta0, Theta1, and Theta2
|
60 |
print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
|
61 |
print("Final Cost: Cost = {}".format(cost.item()))
|
62 |
-
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Function to predict the input hours
|
6 |
+
def predict_score(x1, x2):
|
7 |
+
Theta0 = torch.tensor(-0.5738734424645411)
|
8 |
+
Theta1 = torch.tensor(2.1659122905141825)
|
9 |
+
Theta2 = torch.tensor(0.0)
|
10 |
+
pred_score = Theta0 + Theta1 * x1 + Theta2 * x2
|
11 |
+
return pred_score.item()
|
12 |
+
|
13 |
+
input1 = gr.inputs.Number(label="Number of new students")
|
14 |
+
input2 = gr.inputs.Number(label="Number of temperature")
|
15 |
+
|
16 |
+
output = gr.outputs.Textbox(label='Predicted Score')
|
17 |
+
|
18 |
+
# Gradio interface for the prediction function
|
19 |
+
gr.Interface(fn=predict_score, inputs=[input1, input2], outputs=output).launch()
|
20 |
|
21 |
# Input data
|
22 |
x1 = torch.tensor([50, 60, 70, 80, 90])
|
|
|
77 |
# Print the final values of Theta0, Theta1, and Theta2
|
78 |
print("Final values: Theta0 = {}, Theta1 = {}, Theta2 = {}".format(Theta0.item(), Theta1.item(), Theta2.item()))
|
79 |
print("Final Cost: Cost = {}".format(cost.item()))
|
80 |
+
print("Final values: y_pred = {}, y_actual = {}".format(y_pred, y_actual))
|