Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| from langchain_groq import ChatGroq | |
| from langchain_openai import OpenAIEmbeddings | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain.chains import create_retrieval_chain | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.document_loaders import PyPDFDirectoryLoader | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| ## load the GroqAPI Key | |
| os.environ['OPENAI_API_KEY']=os.getenv("OPENAI_API_KEY") | |
| groq_api_key = os.getenv('GROQ_API_KEY') | |
| st.title("ChatBot Demo for Error Codes") | |
| llm=ChatGroq(groq_api_key=groq_api_key, | |
| model="Llama3-8b-8192") | |
| prompt = ChatPromptTemplate.from_template( | |
| """ | |
| Answer the question based on the provided context only. | |
| Please provide the most accurate response based on the question. | |
| <context> | |
| {context} | |
| <context> | |
| Question: {input} | |
| """ | |
| ) | |
| def vector_embedding(): | |
| if "vectors" not in st.session_state: | |
| st.session_state.embeddings = OpenAIEmbeddings() | |
| st.session_state.loader = PyPDFDirectoryLoader("./data") | |
| st.session_state.docs = st.session_state.loader.load() | |
| st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) | |
| st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings ) | |
| prompt1=st.text_input("Enter your question from Documents") | |
| if st.button("Documents Embedding"): | |
| vector_embedding() | |
| st.write("VectorStore DB is ready") | |
| import time | |
| if prompt1: | |
| start = time.process_time() | |
| document_chain = create_stuff_documents_chain(llm, prompt) | |
| retriever = st.session_state.vectors.as_retriever() | |
| retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
| response = retrieval_chain.invoke({'input': prompt1}) | |
| print("Response time : ", time.process_time() - start) | |
| st.write(response['answer']) | |
| # With a Streamlit expander | |
| with st.expander("Document Similarity Search"): | |
| # Find the relevant chunks | |
| for i, doc in enumerate(response["context"]): | |
| st.write(doc.page_content) | |
| st.write("------------------------------------") | |