Spaces:
Sleeping
Sleeping
### 1. Import and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. Model and Transforms perparation ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=3) | |
# Load save weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu"), | |
weights_only=True | |
) | |
) | |
### 3. Predict fucntin ### | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
transform_img = effnetb2_transforms(img).unsqueeze(0) | |
# Put model into eval mode, main prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_prob=torch.softmax(effnetb2(transform_img),dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]:float(pred_prob[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
time = round(timer()-start_time,4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs,time | |
### 4. Gradio app ### | |
# Create title , description and article | |
title = "FoodVision Mini ππ₯©π£" | |
description = " An [EfficinetNetB2](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html) feature extractor computer vision model to classify images as pizza, steak, sushi" | |
# Create example list | |
example_list = [["examples/"+example] for example in os.listdir("examples")] | |
# Create the Graio demo | |
demo = gr.Interface(fn=predict, # maps inputs to ouputs | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3,label='Predictions'), | |
gr.Number(label="Predicition time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
cache_examples=True) | |
# Launch the demo! | |
demo.launch(debug=False ) | |