Spaces:
Sleeping
Sleeping
import re | |
import math | |
import numpy as np | |
import torch | |
# Code from https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/8e2aeee4a127b295bfc880800e4a312e0f049b85, modified. | |
class PromptChunk: | |
""" | |
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. | |
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. | |
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, | |
so just 75 tokens from prompt. | |
""" | |
def __init__(self): | |
self.tokens = [] | |
self.multipliers = [] | |
self.fixes = [] | |
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): | |
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to | |
have unlimited prompt length and assign weights to tokens in prompt. | |
""" | |
def __init__(self, text_encoder, enable_emphasis=True): | |
super().__init__() | |
self.device = lambda: text_encoder.device | |
self.enable_emphasis = enable_emphasis | |
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, | |
depending on model.""" | |
self.chunk_length = 75 | |
def empty_chunk(self): | |
"""creates an empty PromptChunk and returns it""" | |
chunk = PromptChunk() | |
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | |
chunk.multipliers = [1.0] * (self.chunk_length + 2) | |
return chunk | |
def get_target_prompt_token_count(self, token_count): | |
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" | |
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | |
def tokenize_line(self, line): | |
""" | |
this transforms a single prompt into a list of PromptChunk objects - as many as needed to | |
represent the prompt. | |
Returns the list and the total number of tokens in the prompt. | |
""" | |
if self.enable_emphasis: | |
parsed = parse_prompt_attention(line) | |
else: | |
parsed = [[line, 1.0]] | |
tokenized = self.tokenize([text for text, _ in parsed]) | |
chunks = [] | |
chunk = PromptChunk() | |
token_count = 0 | |
last_comma = -1 | |
def next_chunk(is_last=False): | |
"""puts current chunk into the list of results and produces the next one - empty; | |
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" | |
nonlocal token_count | |
nonlocal last_comma | |
nonlocal chunk | |
if is_last: | |
token_count += len(chunk.tokens) | |
else: | |
token_count += self.chunk_length | |
to_add = self.chunk_length - len(chunk.tokens) | |
if to_add > 0: | |
chunk.tokens += [self.id_end] * to_add | |
chunk.multipliers += [1.0] * to_add | |
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | |
chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | |
last_comma = -1 | |
chunks.append(chunk) | |
chunk = PromptChunk() | |
comma_padding_backtrack = 20 # default value in https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/shared.py#L410 | |
for tokens, (text, weight) in zip(tokenized, parsed): | |
if text == "BREAK" and weight == -1: | |
next_chunk() | |
continue | |
position = 0 | |
while position < len(tokens): | |
token = tokens[position] | |
if token == self.comma_token: | |
last_comma = len(chunk.tokens) | |
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack | |
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. | |
elif ( | |
comma_padding_backtrack != 0 | |
and len(chunk.tokens) == self.chunk_length | |
and last_comma != -1 | |
and len(chunk.tokens) - last_comma <= comma_padding_backtrack | |
): | |
break_location = last_comma + 1 | |
reloc_tokens = chunk.tokens[break_location:] | |
reloc_mults = chunk.multipliers[break_location:] | |
chunk.tokens = chunk.tokens[:break_location] | |
chunk.multipliers = chunk.multipliers[:break_location] | |
next_chunk() | |
chunk.tokens = reloc_tokens | |
chunk.multipliers = reloc_mults | |
if len(chunk.tokens) == self.chunk_length: | |
next_chunk() | |
chunk.tokens.append(token) | |
chunk.multipliers.append(weight) | |
position += 1 | |
if len(chunk.tokens) > 0 or len(chunks) == 0: | |
next_chunk(is_last=True) | |
return chunks, token_count | |
def process_texts(self, texts): | |
""" | |
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum | |
length, in tokens, of all texts. | |
""" | |
token_count = 0 | |
cache = {} | |
batch_chunks = [] | |
for line in texts: | |
if line in cache: | |
chunks = cache[line] | |
else: | |
chunks, current_token_count = self.tokenize_line(line) | |
token_count = max(current_token_count, token_count) | |
cache[line] = chunks | |
batch_chunks.append(chunks) | |
return batch_chunks, token_count | |
def forward(self, texts): | |
""" | |
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. | |
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will | |
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. | |
An example shape returned by this function can be: (2, 77, 768). | |
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet | |
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" | |
""" | |
batch_chunks, token_count = self.process_texts(texts) | |
chunk_count = max([len(x) for x in batch_chunks]) | |
zs = [] | |
ts = [] | |
for i in range(chunk_count): | |
batch_chunk = [ | |
chunks[i] if i < len(chunks) else self.empty_chunk() | |
for chunks in batch_chunks | |
] | |
tokens = [x.tokens for x in batch_chunk] | |
multipliers = [x.multipliers for x in batch_chunk] | |
# self.embeddings.fixes = [x.fixes for x in batch_chunk] | |
# for fixes in self.embeddings.fixes: | |
# for position, embedding in fixes: | |
# used_embeddings[embedding.name] = embedding | |
z = self.process_tokens(tokens, multipliers) | |
zs.append(z) | |
ts.append(tokens) | |
return np.hstack(ts), torch.hstack(zs) | |
def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
""" | |
sends one single prompt chunk to be encoded by transformers neural network. | |
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually | |
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. | |
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier | |
corresponds to one token. | |
""" | |
tokens = torch.asarray(remade_batch_tokens).to(self.device()) | |
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. | |
if self.id_end != self.id_pad: | |
for batch_pos in range(len(remade_batch_tokens)): | |
index = remade_batch_tokens[batch_pos].index(self.id_end) | |
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad | |
z = self.encode_with_transformers(tokens) | |
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
batch_multipliers = torch.asarray(batch_multipliers).to(self.device()) | |
original_mean = z.mean() | |
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
new_mean = z.mean() | |
z = z * (original_mean / new_mean) | |
return z | |
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | |
def __init__(self, tokenizer, text_encoder,CLIP_stop_at_last_layers): | |
super().__init__(text_encoder) | |
self.tokenizer = tokenizer | |
self.text_encoder = text_encoder | |
self.CLIP_stop_at_last_layers = CLIP_stop_at_last_layers | |
vocab = self.tokenizer.get_vocab() | |
self.comma_token = vocab.get(",</w>", None) | |
self.token_mults = {} | |
tokens_with_parens = [ | |
(k, v) | |
for k, v in vocab.items() | |
if "(" in k or ")" in k or "[" in k or "]" in k | |
] | |
for text, ident in tokens_with_parens: | |
mult = 1.0 | |
for c in text: | |
if c == "[": | |
mult /= 1.1 | |
if c == "]": | |
mult *= 1.1 | |
if c == "(": | |
mult *= 1.1 | |
if c == ")": | |
mult /= 1.1 | |
if mult != 1.0: | |
self.token_mults[ident] = mult | |
self.id_start = self.tokenizer.bos_token_id | |
self.id_end = self.tokenizer.eos_token_id | |
self.id_pad = self.id_end | |
def tokenize(self, texts): | |
tokenized = self.tokenizer( | |
texts, truncation=False, add_special_tokens=False | |
)["input_ids"] | |
return tokenized | |
def encode_with_transformers(self, tokens): | |
CLIP_stop_at_last_layers = self.CLIP_stop_at_last_layers | |
tokens = tokens.to(self.text_encoder.device) | |
outputs = self.text_encoder(tokens, output_hidden_states=True) | |
if CLIP_stop_at_last_layers > 1: | |
z = outputs.hidden_states[-CLIP_stop_at_last_layers] | |
z = self.text_encoder.text_model.final_layer_norm(z) | |
else: | |
z = outputs.last_hidden_state | |
return z | |
re_attention = re.compile( | |
r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", | |
re.X, | |
) | |
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
\( - literal character '(' | |
\[ - literal character '[' | |
\) - literal character ')' | |
\] - literal character ']' | |
\\ - literal character '\' | |
anything else - just text | |
>>> parse_prompt_attention('normal text') | |
[['normal text', 1.0]] | |
>>> parse_prompt_attention('an (important) word') | |
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
>>> parse_prompt_attention('(unbalanced') | |
[['unbalanced', 1.1]] | |
>>> parse_prompt_attention('\(literal\]') | |
[['(literal]', 1.0]] | |
>>> parse_prompt_attention('(unnecessary)(parens)') | |
[['unnecessaryparens', 1.1]] | |
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
[['a ', 1.0], | |
['house', 1.5730000000000004], | |
[' ', 1.1], | |
['on', 1.0], | |
[' a ', 1.1], | |
['hill', 0.55], | |
[', sun, ', 1.1], | |
['sky', 1.4641000000000006], | |
['.', 1.1]] | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith("\\"): | |
res.append([text[1:], 1.0]) | |
elif text == "(": | |
round_brackets.append(len(res)) | |
elif text == "[": | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ")" and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == "]" and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
parts = re.split(re_break, text) | |
for i, part in enumerate(parts): | |
if i > 0: | |
res.append(["BREAK", -1]) | |
res.append([part, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |