Stefan Dumitrescu
Update
2f0ed55
raw
history blame
8.3 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
st.set_page_config(
page_title="Romanian Text Generator",
page_icon="🇷🇴",
layout="wide"
)
#############################################
# Python stuff here
model_list = [
"dumitrescustefan/gpt-neo-romanian-780m",
"readerbench/RoGPT2-base",
"readerbench/RoGPT2-medium",
"readerbench/RoGPT2-large"
]
def greedy_search(model, input_ids, attention_mask, no_repeat_ngram_size, max_length):
return model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
no_repeat_ngram_size=no_repeat_ngram_size,
max_length=max_length
)
def beam_search(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, num_beams):
return model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
no_repeat_ngram_size=no_repeat_ngram_size,
max_length=max_length,
num_beams=num_beams,
early_stopping=True
)
def sampling(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, temperature, top_k, top_p):
return model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
no_repeat_ngram_size=no_repeat_ngram_size,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_k=top_k,
top_p=top_p
)
def typical_sampling(model, input_ids, attention_mask, no_repeat_ngram_size, max_length, temperature, typical_p):
return model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
no_repeat_ngram_size=no_repeat_ngram_size,
max_length=max_length,
do_sample=True,
temperature=temperature,
typical_p=typical_p,
top_k=0
)
@st.cache(allow_output_mutation=True)
def setModel(model_checkpoint):
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return model, tokenizer
#############################################
col_title, _, col_b1, col_b2, col_b3, _ = st.columns([18, 1, 8, 8, 8, 1])
col_title.markdown("**Playground for text generation with Romanian models**")
button_greedy = col_b1.button("Greedy generation")
button_sampling = col_b2.button("Sampling generation")
button_typical = col_b3.button("Typical sampling generation")
col1, _, col2 = st.columns([10, 1, 16])
with col1:
st.markdown("**Step 1: Select model**")
model_checkpoint = st.selectbox("Select model", model_list)
st.markdown("**Step 2: Adjust specific text generation parameters**")
tab_greedy, tab_beamsearch, tab_sampling, tab_typical = st.tabs(["Greedy", "Beam-search", "Sampling", "Typical Sampling"])
with tab_greedy:
st.write("as")
with tab_beamsearch:
num_beams = st.slider("Num beams", min_value=1, max_value=30, step=5, value=5)
with tab_sampling:
top_p = st.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9)
top_k = st.slider("Top-k", min_value=0, max_value=100, step=10, value=0)
with tab_typical:
typical_p = st.slider("Typical-p", min_value=0., max_value=1., step=.10, value=1.0)
st.markdown("""---""")
st.markdown("**Step 3: Adjust common text generation parameters**")
no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
temperature = st.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)
st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")
def update_prompt():
st.session_state['text'] = prompt
prompt = st.selectbox("Select prompt", model_list, on_change=update_prompt)
@st.cache(allow_output_mutation=True)
def setModel(model_checkpoint):
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
return model, tokenizer
#####################################################
# show-time
if 'text' not in st.session_state:
st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'
details = ""
tokenized_text = None
if button_greedy or button_sampling or button_typical:
model, tokenizer = setModel(model_checkpoint)
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
keep_last = 512 - max_length
print(f"keep last: {keep_last}")
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
previous_ids = tokenized_text.input_ids[0][:keep_last]
st.warning(f"kept last {keep_last}")
else:
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
previous_ids = None
length = min(512, len(input_ids)+max_length)
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
if previous_ids is not None:
new_text = tokenizer.decode(torch.cat([previous_ids, output[0]], dim=1), skip_special_tokens=True)
else:
new_text = tokenizer.decode(output[0], skip_special_tokens=True)
st.session_state['text'] = new_text
details = "Text generated using greedy decoding"
"""
if button_greedy:
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
print(f"len text: {len(tokenized_text.input_ids[0])}")
print(f"max_len : {max_length}")
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
keep_last = 512 - max_length
print(f"keep last: {keep_last}")
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
st.warning(f"kept last {keep_last}")
else:
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
length = min(512, len(input_ids)+max_length)
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
details = "Text generated using greedy decoding"
if button_sampling:
model, tokenizer = setModel(model_checkpoint)
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
input_ids = tokenized_text.input_ids
attention_mask = tokenized_text.attention_mask
length = min(512, len(input_ids[0]) + max_length)
output = sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, top_k, top_p)
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
if button_typical:
model, tokenizer = setModel(model_checkpoint)
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
input_ids, attention_mask = tokenized_text.input_ids, tokenized_text.attention_mask
length = min(512, len(input_ids[0]) + max_length)
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, typical_p)
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
"""
text_element = col2.text_area('Text:', height=400, key="text")
col2.markdown("""---""")
col2.text("Statistics and details:")
if details != "":
col2.caption("\tGeneration details: " + details)
if tokenized_text is None:
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tt = tokenizer(text_element, add_special_tokens=False, return_tensors="pt")
col2.caption(f"\tText length is {len(text_element)} characters, {len(tt.input_ids[0])} tokens.")