Fabrice-TIERCELIN
commited on
Upload 3 files
Browse files
sgm/modules/autoencoding/lpips/__init__.py
ADDED
File without changes
|
sgm/modules/autoencoding/lpips/util.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}
|
10 |
+
|
11 |
+
CKPT_MAP = {"vgg_lpips": "vgg.pth"}
|
12 |
+
|
13 |
+
MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}
|
14 |
+
|
15 |
+
|
16 |
+
def download(url, local_path, chunk_size=1024):
|
17 |
+
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
18 |
+
with requests.get(url, stream=True) as r:
|
19 |
+
total_size = int(r.headers.get("content-length", 0))
|
20 |
+
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
21 |
+
with open(local_path, "wb") as f:
|
22 |
+
for data in r.iter_content(chunk_size=chunk_size):
|
23 |
+
if data:
|
24 |
+
f.write(data)
|
25 |
+
pbar.update(chunk_size)
|
26 |
+
|
27 |
+
|
28 |
+
def md5_hash(path):
|
29 |
+
with open(path, "rb") as f:
|
30 |
+
content = f.read()
|
31 |
+
return hashlib.md5(content).hexdigest()
|
32 |
+
|
33 |
+
|
34 |
+
def get_ckpt_path(name, root, check=False):
|
35 |
+
assert name in URL_MAP
|
36 |
+
path = os.path.join(root, CKPT_MAP[name])
|
37 |
+
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
38 |
+
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
|
39 |
+
download(URL_MAP[name], path)
|
40 |
+
md5 = md5_hash(path)
|
41 |
+
assert md5 == MD5_MAP[name], md5
|
42 |
+
return path
|
43 |
+
|
44 |
+
|
45 |
+
class ActNorm(nn.Module):
|
46 |
+
def __init__(
|
47 |
+
self, num_features, logdet=False, affine=True, allow_reverse_init=False
|
48 |
+
):
|
49 |
+
assert affine
|
50 |
+
super().__init__()
|
51 |
+
self.logdet = logdet
|
52 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
53 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
54 |
+
self.allow_reverse_init = allow_reverse_init
|
55 |
+
|
56 |
+
self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8))
|
57 |
+
|
58 |
+
def initialize(self, input):
|
59 |
+
with torch.no_grad():
|
60 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
61 |
+
mean = (
|
62 |
+
flatten.mean(1)
|
63 |
+
.unsqueeze(1)
|
64 |
+
.unsqueeze(2)
|
65 |
+
.unsqueeze(3)
|
66 |
+
.permute(1, 0, 2, 3)
|
67 |
+
)
|
68 |
+
std = (
|
69 |
+
flatten.std(1)
|
70 |
+
.unsqueeze(1)
|
71 |
+
.unsqueeze(2)
|
72 |
+
.unsqueeze(3)
|
73 |
+
.permute(1, 0, 2, 3)
|
74 |
+
)
|
75 |
+
|
76 |
+
self.loc.data.copy_(-mean)
|
77 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
78 |
+
|
79 |
+
def forward(self, input, reverse=False):
|
80 |
+
if reverse:
|
81 |
+
return self.reverse(input)
|
82 |
+
if len(input.shape) == 2:
|
83 |
+
input = input[:, :, None, None]
|
84 |
+
squeeze = True
|
85 |
+
else:
|
86 |
+
squeeze = False
|
87 |
+
|
88 |
+
_, _, height, width = input.shape
|
89 |
+
|
90 |
+
if self.training and self.initialized.item() == 0:
|
91 |
+
self.initialize(input)
|
92 |
+
self.initialized.fill_(1)
|
93 |
+
|
94 |
+
h = self.scale * (input + self.loc)
|
95 |
+
|
96 |
+
if squeeze:
|
97 |
+
h = h.squeeze(-1).squeeze(-1)
|
98 |
+
|
99 |
+
if self.logdet:
|
100 |
+
log_abs = torch.log(torch.abs(self.scale))
|
101 |
+
logdet = height * width * torch.sum(log_abs)
|
102 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
103 |
+
return h, logdet
|
104 |
+
|
105 |
+
return h
|
106 |
+
|
107 |
+
def reverse(self, output):
|
108 |
+
if self.training and self.initialized.item() == 0:
|
109 |
+
if not self.allow_reverse_init:
|
110 |
+
raise RuntimeError(
|
111 |
+
"Initializing ActNorm in reverse direction is "
|
112 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
self.initialize(output)
|
116 |
+
self.initialized.fill_(1)
|
117 |
+
|
118 |
+
if len(output.shape) == 2:
|
119 |
+
output = output[:, :, None, None]
|
120 |
+
squeeze = True
|
121 |
+
else:
|
122 |
+
squeeze = False
|
123 |
+
|
124 |
+
h = output / self.scale - self.loc
|
125 |
+
|
126 |
+
if squeeze:
|
127 |
+
h = h.squeeze(-1).squeeze(-1)
|
128 |
+
return h
|
sgm/modules/autoencoding/lpips/vqperceptual.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def hinge_d_loss(logits_real, logits_fake):
|
6 |
+
loss_real = torch.mean(F.relu(1.0 - logits_real))
|
7 |
+
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
|
8 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
9 |
+
return d_loss
|
10 |
+
|
11 |
+
|
12 |
+
def vanilla_d_loss(logits_real, logits_fake):
|
13 |
+
d_loss = 0.5 * (
|
14 |
+
torch.mean(torch.nn.functional.softplus(-logits_real))
|
15 |
+
+ torch.mean(torch.nn.functional.softplus(logits_fake))
|
16 |
+
)
|
17 |
+
return d_loss
|