Fabrice-TIERCELIN commited on
Commit
ed33c51
·
verified ·
1 Parent(s): 50b940f

Rewrite old function from modeling_opt.py

Browse files
llava/model/language_model/mpt/hf_prefixlm_converter.py CHANGED
@@ -18,8 +18,6 @@ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
18
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
19
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
20
  from transformers.models.opt.modeling_opt import OPTForCausalLM
21
- from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
22
- from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
23
  logger = logging.get_logger(__name__)
24
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
25
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
@@ -52,6 +50,36 @@ def _expand_mask_bloom(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
52
  expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
53
  return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
56
  """Converts a GPT-style Causal LM to a Prefix LM.
57
 
 
18
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
19
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
20
  from transformers.models.opt.modeling_opt import OPTForCausalLM
 
 
21
  logger = logging.get_logger(__name__)
22
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
23
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
 
50
  expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
51
  return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
52
 
53
+ def _make_causal_mask_opt(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ def _expand_mask_opt(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
71
+ """
72
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
73
+ """
74
+ bsz, src_len = mask.size()
75
+ tgt_len = tgt_len if tgt_len is not None else src_len
76
+
77
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
78
+
79
+ inverted_mask = 1.0 - expanded_mask
80
+
81
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
82
+
83
  def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
84
  """Converts a GPT-style Causal LM to a Prefix LM.
85