Fabrice-TIERCELIN commited on
Commit
df25700
·
verified ·
1 Parent(s): f2d9681

Upload 3 files

Browse files
llava/train/llava_trainer.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ from torch.utils.data import Sampler
5
+
6
+ from transformers import Trainer
7
+ from transformers.trainer import (
8
+ has_length,
9
+ )
10
+ from typing import List, Optional
11
+
12
+
13
+ def maybe_zero_3(param, ignore_status=False, name=None):
14
+ from deepspeed import zero
15
+ from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
16
+ if hasattr(param, "ds_id"):
17
+ if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
18
+ if not ignore_status:
19
+ print(name, 'no ignore status')
20
+ with zero.GatheredParameters([param]):
21
+ param = param.data.detach().cpu().clone()
22
+ else:
23
+ param = param.detach().cpu().clone()
24
+ return param
25
+
26
+
27
+ def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
28
+ to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
29
+ to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
30
+ return to_return
31
+
32
+
33
+ def split_to_even_chunks(indices, lengths, num_chunks):
34
+ """
35
+ Split a list of indices into `chunks` chunks of roughly equal lengths.
36
+ """
37
+
38
+ if len(indices) % num_chunks != 0:
39
+ return [indices[i::num_chunks] for i in range(num_chunks)]
40
+
41
+ num_indices_per_chunk = len(indices) // num_chunks
42
+
43
+ chunks = [[] for _ in range(num_chunks)]
44
+ chunks_lengths = [0 for _ in range(num_chunks)]
45
+ for index in indices:
46
+ shortest_chunk = chunks_lengths.index(min(chunks_lengths))
47
+ chunks[shortest_chunk].append(index)
48
+ chunks_lengths[shortest_chunk] += lengths[index]
49
+ if len(chunks[shortest_chunk]) == num_indices_per_chunk:
50
+ chunks_lengths[shortest_chunk] = float("inf")
51
+
52
+ return chunks
53
+
54
+
55
+ def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
56
+ # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
57
+ assert all(l != 0 for l in lengths), "Should not have zero length."
58
+ mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
59
+ lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
60
+
61
+ assert len(mm_indices) > 0, "Should have at least one multimodal sample."
62
+ assert len(lang_indices) > 0, "Should have at least one language sample."
63
+
64
+ mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
65
+ lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
66
+ megabatch_size = world_size * batch_size
67
+ mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
68
+ lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
69
+
70
+ last_mm = mm_megabatches[-1]
71
+ last_lang = lang_megabatches[-1]
72
+ additional_batch = last_mm + last_lang
73
+ megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
74
+ megabatch_indices = torch.randperm(len(megabatches), generator=generator)
75
+ megabatches = [megabatches[i] for i in megabatch_indices]
76
+
77
+ if len(additional_batch) >= megabatch_size:
78
+ megabatches = [additional_batch[:megabatch_size]] + megabatches
79
+ additional_batch = additional_batch[megabatch_size:]
80
+
81
+ if len(additional_batch) > 0:
82
+ megabatches.append(additional_batch)
83
+
84
+ return [i for megabatch in megabatches for i in megabatch]
85
+
86
+
87
+ def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
88
+ # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
89
+ indices = torch.randperm(len(lengths), generator=generator)
90
+ megabatch_size = world_size * batch_size
91
+ megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
92
+ megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
93
+ megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
94
+
95
+ return [i for megabatch in megabatches for batch in megabatch for i in batch]
96
+
97
+
98
+ class LengthGroupedSampler(Sampler):
99
+ r"""
100
+ Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
101
+ keeping a bit of randomness.
102
+ """
103
+
104
+ def __init__(
105
+ self,
106
+ batch_size: int,
107
+ world_size: int,
108
+ lengths: Optional[List[int]] = None,
109
+ generator=None,
110
+ group_by_modality: bool = False,
111
+ ):
112
+ if lengths is None:
113
+ raise ValueError("Lengths must be provided.")
114
+
115
+ self.batch_size = batch_size
116
+ self.world_size = world_size
117
+ self.lengths = lengths
118
+ self.generator = generator
119
+ self.group_by_modality = group_by_modality
120
+
121
+ def __len__(self):
122
+ return len(self.lengths)
123
+
124
+ def __iter__(self):
125
+ if self.group_by_modality:
126
+ indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
127
+ else:
128
+ indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
129
+ return iter(indices)
130
+
131
+
132
+ class LLaVATrainer(Trainer):
133
+
134
+ def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
135
+ if self.train_dataset is None or not has_length(self.train_dataset):
136
+ return None
137
+
138
+ if self.args.group_by_modality_length:
139
+ lengths = self.train_dataset.modality_lengths
140
+ return LengthGroupedSampler(
141
+ # self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
142
+ self.args.train_batch_size,
143
+ world_size=self.args.world_size,
144
+ lengths=lengths,
145
+ group_by_modality=True,
146
+ )
147
+ else:
148
+ return super()._get_train_sampler()
149
+
150
+ def _save_checkpoint(self, model, trial, metrics=None):
151
+ if getattr(self.args, 'tune_mm_mlp_adapter', False):
152
+ from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
153
+ checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
154
+
155
+ run_dir = self._get_output_dir(trial=trial)
156
+ output_dir = os.path.join(run_dir, checkpoint_folder)
157
+
158
+ # Only save Adapter
159
+ keys_to_match = ['mm_projector', 'vision_resampler']
160
+ if getattr(self.args, "use_im_start_end", False):
161
+ keys_to_match.extend(['embed_tokens', 'embed_in'])
162
+
163
+ weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match)
164
+
165
+ if self.args.local_rank == 0 or self.args.local_rank == -1:
166
+ self.model.config.save_pretrained(output_dir)
167
+ torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
168
+ else:
169
+ super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics)
170
+
171
+ def _save(self, output_dir: Optional[str] = None, state_dict=None):
172
+ if getattr(self.args, 'tune_mm_mlp_adapter', False):
173
+ pass
174
+ else:
175
+ super(LLaVATrainer, self)._save(output_dir, state_dict)
llava/train/train.py ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
2
+ # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
3
+ # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ import os
18
+ import copy
19
+ from dataclasses import dataclass, field
20
+ import json
21
+ import logging
22
+ import pathlib
23
+ from typing import Dict, Optional, Sequence, List
24
+
25
+ import torch
26
+
27
+ import transformers
28
+
29
+ from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
30
+ from torch.utils.data import Dataset
31
+ from llava.train.llava_trainer import LLaVATrainer
32
+
33
+ from llava import conversation as conversation_lib
34
+ from llava.model import *
35
+ from llava.mm_utils import tokenizer_image_token
36
+
37
+ from PIL import Image
38
+
39
+
40
+ local_rank = None
41
+
42
+
43
+ def rank0_print(*args):
44
+ if local_rank == 0:
45
+ print(*args)
46
+
47
+
48
+ @dataclass
49
+ class ModelArguments:
50
+ model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
51
+ version: Optional[str] = field(default="v0")
52
+ freeze_backbone: bool = field(default=False)
53
+ tune_mm_mlp_adapter: bool = field(default=False)
54
+ vision_tower: Optional[str] = field(default=None)
55
+ mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
56
+ pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
57
+ mm_projector_type: Optional[str] = field(default='linear')
58
+ mm_use_im_start_end: bool = field(default=False)
59
+ mm_use_im_patch_token: bool = field(default=True)
60
+ mm_vision_select_feature: Optional[str] = field(default="patch")
61
+
62
+
63
+ @dataclass
64
+ class DataArguments:
65
+ data_path: str = field(default=None,
66
+ metadata={"help": "Path to the training data."})
67
+ lazy_preprocess: bool = False
68
+ is_multimodal: bool = False
69
+ image_folder: Optional[str] = field(default=None)
70
+ image_aspect_ratio: str = 'square'
71
+ image_grid_pinpoints: Optional[str] = field(default=None)
72
+
73
+
74
+ @dataclass
75
+ class TrainingArguments(transformers.TrainingArguments):
76
+ cache_dir: Optional[str] = field(default=None)
77
+ optim: str = field(default="adamw_torch")
78
+ remove_unused_columns: bool = field(default=False)
79
+ freeze_mm_mlp_adapter: bool = field(default=False)
80
+ mpt_attn_impl: Optional[str] = field(default="triton")
81
+ model_max_length: int = field(
82
+ default=512,
83
+ metadata={
84
+ "help":
85
+ "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
86
+ },
87
+ )
88
+ double_quant: bool = field(
89
+ default=True,
90
+ metadata={"help": "Compress the quantization statistics through double quantization."}
91
+ )
92
+ quant_type: str = field(
93
+ default="nf4",
94
+ metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
95
+ )
96
+ bits: int = field(
97
+ default=16,
98
+ metadata={"help": "How many bits to use."}
99
+ )
100
+ lora_enable: bool = False
101
+ lora_r: int = 64
102
+ lora_alpha: int = 16
103
+ lora_dropout: float = 0.05
104
+ lora_weight_path: str = ""
105
+ lora_bias: str = "none"
106
+ group_by_modality_length: bool = field(default=False)
107
+
108
+
109
+ def maybe_zero_3(param, ignore_status=False, name=None):
110
+ from deepspeed import zero
111
+ from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
112
+ if hasattr(param, "ds_id"):
113
+ if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
114
+ if not ignore_status:
115
+ logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
116
+ with zero.GatheredParameters([param]):
117
+ param = param.data.detach().cpu().clone()
118
+ else:
119
+ param = param.detach().cpu().clone()
120
+ return param
121
+
122
+
123
+ # Borrowed from peft.utils.get_peft_model_state_dict
124
+ def get_peft_state_maybe_zero_3(named_params, bias):
125
+ if bias == "none":
126
+ to_return = {k: t for k, t in named_params if "lora_" in k}
127
+ elif bias == "all":
128
+ to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
129
+ elif bias == "lora_only":
130
+ to_return = {}
131
+ maybe_lora_bias = {}
132
+ lora_bias_names = set()
133
+ for k, t in named_params:
134
+ if "lora_" in k:
135
+ to_return[k] = t
136
+ bias_name = k.split("lora_")[0] + "bias"
137
+ lora_bias_names.add(bias_name)
138
+ elif "bias" in k:
139
+ maybe_lora_bias[k] = t
140
+ for k, t in maybe_lora_bias:
141
+ if bias_name in lora_bias_names:
142
+ to_return[bias_name] = t
143
+ else:
144
+ raise NotImplementedError
145
+ to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
146
+ return to_return
147
+
148
+
149
+ def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
150
+ to_return = {k: t for k, t in named_params if "lora_" not in k}
151
+ if require_grad_only:
152
+ to_return = {k: t for k, t in to_return.items() if t.requires_grad}
153
+ to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
154
+ return to_return
155
+
156
+
157
+ def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
158
+ to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
159
+ to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
160
+ return to_return
161
+
162
+
163
+ def find_all_linear_names(model):
164
+ cls = torch.nn.Linear
165
+ lora_module_names = set()
166
+ multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
167
+ for name, module in model.named_modules():
168
+ if any(mm_keyword in name for mm_keyword in multimodal_keywords):
169
+ continue
170
+ if isinstance(module, cls):
171
+ names = name.split('.')
172
+ lora_module_names.add(names[0] if len(names) == 1 else names[-1])
173
+
174
+ if 'lm_head' in lora_module_names: # needed for 16-bit
175
+ lora_module_names.remove('lm_head')
176
+ return list(lora_module_names)
177
+
178
+
179
+ def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
180
+ output_dir: str):
181
+ """Collects the state dict and dump to disk."""
182
+
183
+ if getattr(trainer.args, "tune_mm_mlp_adapter", False):
184
+ # Only save Adapter
185
+ keys_to_match = ['mm_projector']
186
+ if getattr(trainer.args, "use_im_start_end", False):
187
+ keys_to_match.extend(['embed_tokens', 'embed_in'])
188
+
189
+ weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
190
+ trainer.model.config.save_pretrained(output_dir)
191
+
192
+ current_folder = output_dir.split('/')[-1]
193
+ parent_folder = os.path.dirname(output_dir)
194
+ if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
195
+ if current_folder.startswith('checkpoint-'):
196
+ mm_projector_folder = os.path.join(parent_folder, "mm_projector")
197
+ os.makedirs(mm_projector_folder, exist_ok=True)
198
+ torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
199
+ else:
200
+ torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
201
+ return
202
+
203
+ if trainer.deepspeed:
204
+ torch.cuda.synchronize()
205
+ trainer.save_model(output_dir)
206
+ return
207
+
208
+ state_dict = trainer.model.state_dict()
209
+ if trainer.args.should_save:
210
+ cpu_state_dict = {
211
+ key: value.cpu()
212
+ for key, value in state_dict.items()
213
+ }
214
+ del state_dict
215
+ trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
216
+
217
+
218
+ def smart_tokenizer_and_embedding_resize(
219
+ special_tokens_dict: Dict,
220
+ tokenizer: transformers.PreTrainedTokenizer,
221
+ model: transformers.PreTrainedModel,
222
+ ):
223
+ """Resize tokenizer and embedding.
224
+
225
+ Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
226
+ """
227
+ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
228
+ model.resize_token_embeddings(len(tokenizer))
229
+
230
+ if num_new_tokens > 0:
231
+ input_embeddings = model.get_input_embeddings().weight.data
232
+ output_embeddings = model.get_output_embeddings().weight.data
233
+
234
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
235
+ dim=0, keepdim=True)
236
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
237
+ dim=0, keepdim=True)
238
+
239
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
240
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
241
+
242
+
243
+ def _tokenize_fn(strings: Sequence[str],
244
+ tokenizer: transformers.PreTrainedTokenizer) -> Dict:
245
+ """Tokenize a list of strings."""
246
+ tokenized_list = [
247
+ tokenizer(
248
+ text,
249
+ return_tensors="pt",
250
+ padding="longest",
251
+ max_length=tokenizer.model_max_length,
252
+ truncation=True,
253
+ ) for text in strings
254
+ ]
255
+ input_ids = labels = [
256
+ tokenized.input_ids[0] for tokenized in tokenized_list
257
+ ]
258
+ input_ids_lens = labels_lens = [
259
+ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
260
+ for tokenized in tokenized_list
261
+ ]
262
+ return dict(
263
+ input_ids=input_ids,
264
+ labels=labels,
265
+ input_ids_lens=input_ids_lens,
266
+ labels_lens=labels_lens,
267
+ )
268
+
269
+
270
+ def _mask_targets(target, tokenized_lens, speakers):
271
+ # cur_idx = 0
272
+ cur_idx = tokenized_lens[0]
273
+ tokenized_lens = tokenized_lens[1:]
274
+ target[:cur_idx] = IGNORE_INDEX
275
+ for tokenized_len, speaker in zip(tokenized_lens, speakers):
276
+ if speaker == "human":
277
+ target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
278
+ cur_idx += tokenized_len
279
+
280
+
281
+ def _add_speaker_and_signal(header, source, get_conversation=True):
282
+ """Add speaker and start/end signal on each round."""
283
+ BEGIN_SIGNAL = "### "
284
+ END_SIGNAL = "\n"
285
+ conversation = header
286
+ for sentence in source:
287
+ from_str = sentence["from"]
288
+ if from_str.lower() == "human":
289
+ from_str = conversation_lib.default_conversation.roles[0]
290
+ elif from_str.lower() == "gpt":
291
+ from_str = conversation_lib.default_conversation.roles[1]
292
+ else:
293
+ from_str = 'unknown'
294
+ sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
295
+ sentence["value"] + END_SIGNAL)
296
+ if get_conversation:
297
+ conversation += sentence["value"]
298
+ conversation += BEGIN_SIGNAL
299
+ return conversation
300
+
301
+
302
+ def preprocess_multimodal(
303
+ sources: Sequence[str],
304
+ data_args: DataArguments
305
+ ) -> Dict:
306
+ is_multimodal = data_args.is_multimodal
307
+ if not is_multimodal:
308
+ return sources
309
+
310
+ for source in sources:
311
+ for sentence in source:
312
+ if DEFAULT_IMAGE_TOKEN in sentence['value']:
313
+ sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
314
+ sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
315
+ sentence['value'] = sentence['value'].strip()
316
+ if "mmtag" in conversation_lib.default_conversation.version:
317
+ sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>')
318
+ replace_token = DEFAULT_IMAGE_TOKEN
319
+ if data_args.mm_use_im_start_end:
320
+ replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
321
+ sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
322
+
323
+ return sources
324
+
325
+
326
+ def preprocess_llama_2(
327
+ sources,
328
+ tokenizer: transformers.PreTrainedTokenizer,
329
+ has_image: bool = False
330
+ ) -> Dict:
331
+ conv = conversation_lib.default_conversation.copy()
332
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
333
+
334
+ # Apply prompt templates
335
+ conversations = []
336
+ for i, source in enumerate(sources):
337
+ if roles[source[0]["from"]] != conv.roles[0]:
338
+ # Skip the first one if it is not from human
339
+ source = source[1:]
340
+
341
+ conv.messages = []
342
+ for j, sentence in enumerate(source):
343
+ role = roles[sentence["from"]]
344
+ assert role == conv.roles[j % 2], f"{i}"
345
+ conv.append_message(role, sentence["value"])
346
+ conversations.append(conv.get_prompt())
347
+
348
+ # Tokenize conversations
349
+
350
+ if has_image:
351
+ input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
352
+ else:
353
+ input_ids = tokenizer(
354
+ conversations,
355
+ return_tensors="pt",
356
+ padding="longest",
357
+ max_length=tokenizer.model_max_length,
358
+ truncation=True,
359
+ ).input_ids
360
+
361
+ targets = input_ids.clone()
362
+
363
+ assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
364
+
365
+ # Mask targets
366
+ sep = "[/INST] "
367
+ for conversation, target in zip(conversations, targets):
368
+ total_len = int(target.ne(tokenizer.pad_token_id).sum())
369
+
370
+ rounds = conversation.split(conv.sep2)
371
+ cur_len = 1
372
+ target[:cur_len] = IGNORE_INDEX
373
+ for i, rou in enumerate(rounds):
374
+ if rou == "":
375
+ break
376
+
377
+ parts = rou.split(sep)
378
+ if len(parts) != 2:
379
+ break
380
+ parts[0] += sep
381
+
382
+ if has_image:
383
+ round_len = len(tokenizer_image_token(rou, tokenizer))
384
+ instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
385
+ else:
386
+ round_len = len(tokenizer(rou).input_ids)
387
+ instruction_len = len(tokenizer(parts[0]).input_ids) - 2
388
+
389
+ target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
390
+
391
+ cur_len += round_len
392
+ target[cur_len:] = IGNORE_INDEX
393
+
394
+ if cur_len < tokenizer.model_max_length:
395
+ if cur_len != total_len:
396
+ target[:] = IGNORE_INDEX
397
+ print(
398
+ f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
399
+ f" (ignored)"
400
+ )
401
+
402
+ return dict(
403
+ input_ids=input_ids,
404
+ labels=targets,
405
+ )
406
+
407
+
408
+ def preprocess_v1(
409
+ sources,
410
+ tokenizer: transformers.PreTrainedTokenizer,
411
+ has_image: bool = False
412
+ ) -> Dict:
413
+ conv = conversation_lib.default_conversation.copy()
414
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
415
+
416
+ # Apply prompt templates
417
+ conversations = []
418
+ for i, source in enumerate(sources):
419
+ if roles[source[0]["from"]] != conv.roles[0]:
420
+ # Skip the first one if it is not from human
421
+ source = source[1:]
422
+
423
+ conv.messages = []
424
+ for j, sentence in enumerate(source):
425
+ role = roles[sentence["from"]]
426
+ assert role == conv.roles[j % 2], f"{i}"
427
+ conv.append_message(role, sentence["value"])
428
+ conversations.append(conv.get_prompt())
429
+
430
+ # Tokenize conversations
431
+
432
+ if has_image:
433
+ input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
434
+ else:
435
+ input_ids = tokenizer(
436
+ conversations,
437
+ return_tensors="pt",
438
+ padding="longest",
439
+ max_length=tokenizer.model_max_length,
440
+ truncation=True,
441
+ ).input_ids
442
+
443
+ targets = input_ids.clone()
444
+
445
+ assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
446
+
447
+ # Mask targets
448
+ sep = conv.sep + conv.roles[1] + ": "
449
+ for conversation, target in zip(conversations, targets):
450
+ total_len = int(target.ne(tokenizer.pad_token_id).sum())
451
+
452
+ rounds = conversation.split(conv.sep2)
453
+ cur_len = 1
454
+ target[:cur_len] = IGNORE_INDEX
455
+ for i, rou in enumerate(rounds):
456
+ if rou == "":
457
+ break
458
+
459
+ parts = rou.split(sep)
460
+ if len(parts) != 2:
461
+ break
462
+ parts[0] += sep
463
+
464
+ if has_image:
465
+ round_len = len(tokenizer_image_token(rou, tokenizer))
466
+ instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
467
+ else:
468
+ round_len = len(tokenizer(rou).input_ids)
469
+ instruction_len = len(tokenizer(parts[0]).input_ids) - 2
470
+
471
+ target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
472
+
473
+ cur_len += round_len
474
+ target[cur_len:] = IGNORE_INDEX
475
+
476
+ if cur_len < tokenizer.model_max_length:
477
+ if cur_len != total_len:
478
+ target[:] = IGNORE_INDEX
479
+ print(
480
+ f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
481
+ f" (ignored)"
482
+ )
483
+
484
+ return dict(
485
+ input_ids=input_ids,
486
+ labels=targets,
487
+ )
488
+
489
+
490
+ def preprocess_mpt(
491
+ sources,
492
+ tokenizer: transformers.PreTrainedTokenizer,
493
+ ) -> Dict:
494
+ conv = conversation_lib.default_conversation.copy()
495
+ roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
496
+
497
+ # Apply prompt templates
498
+ conversations = []
499
+ for i, source in enumerate(sources):
500
+ if roles[source[0]["from"]] != conv.roles[0]:
501
+ # Skip the first one if it is not from human
502
+ source = source[1:]
503
+
504
+ conv.messages = []
505
+ for j, sentence in enumerate(source):
506
+ role = roles[sentence["from"]]
507
+ assert role == conv.roles[j % 2], f"{i}"
508
+ conv.append_message(role, sentence["value"])
509
+ conversations.append(conv.get_prompt())
510
+
511
+ # Tokenize conversations
512
+ input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
513
+ targets = input_ids.clone()
514
+ assert conv.sep_style == conversation_lib.SeparatorStyle.MPT
515
+
516
+ # Mask targets
517
+ sep = conv.sep + conv.roles[1]
518
+ for conversation, target in zip(conversations, targets):
519
+ total_len = int(target.ne(tokenizer.pad_token_id).sum())
520
+
521
+ rounds = conversation.split(conv.sep)
522
+ re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt
523
+ for conv_idx in range(3, len(rounds), 2):
524
+ re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt
525
+ cur_len = 0
526
+ target[:cur_len] = IGNORE_INDEX
527
+ for i, rou in enumerate(re_rounds):
528
+ if rou == "":
529
+ break
530
+
531
+ parts = rou.split(sep)
532
+ if len(parts) != 2:
533
+ break
534
+ parts[0] += sep
535
+ round_len = len(tokenizer_image_token(rou, tokenizer)) + len(tokenizer_image_token(conv.sep, tokenizer))
536
+ instruction_len = len(tokenizer_image_token(parts[0], tokenizer))
537
+ target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
538
+
539
+ cur_len += round_len
540
+ target[cur_len:] = IGNORE_INDEX
541
+
542
+ if cur_len < tokenizer.model_max_length:
543
+ if cur_len != total_len:
544
+ target[:] = IGNORE_INDEX
545
+ print(
546
+ f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
547
+ f" (ignored)"
548
+ )
549
+
550
+ return dict(
551
+ input_ids=input_ids,
552
+ labels=targets,
553
+ )
554
+
555
+
556
+ def preprocess_plain(
557
+ sources: Sequence[str],
558
+ tokenizer: transformers.PreTrainedTokenizer,
559
+ ) -> Dict:
560
+ # add end signal and concatenate together
561
+ conversations = []
562
+ for source in sources:
563
+ assert len(source) == 2
564
+ assert DEFAULT_IMAGE_TOKEN in source[0]['value']
565
+ source[0]['value'] = DEFAULT_IMAGE_TOKEN
566
+ conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
567
+ conversations.append(conversation)
568
+ # tokenize conversations
569
+ input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
570
+ targets = copy.deepcopy(input_ids)
571
+ for target, source in zip(targets, sources):
572
+ tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
573
+ target[:tokenized_len] = IGNORE_INDEX
574
+
575
+ return dict(input_ids=input_ids, labels=targets)
576
+
577
+
578
+ def preprocess(
579
+ sources: Sequence[str],
580
+ tokenizer: transformers.PreTrainedTokenizer,
581
+ has_image: bool = False
582
+ ) -> Dict:
583
+ """
584
+ Given a list of sources, each is a conversation list. This transform:
585
+ 1. Add signal '### ' at the beginning each sentence, with end signal '\n';
586
+ 2. Concatenate conversations together;
587
+ 3. Tokenize the concatenated conversation;
588
+ 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
589
+ """
590
+ if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
591
+ return preprocess_plain(sources, tokenizer)
592
+ if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
593
+ return preprocess_llama_2(sources, tokenizer, has_image=has_image)
594
+ if conversation_lib.default_conversation.version.startswith("v1"):
595
+ return preprocess_v1(sources, tokenizer, has_image=has_image)
596
+ if conversation_lib.default_conversation.version == "mpt":
597
+ return preprocess_mpt(sources, tokenizer)
598
+ # add end signal and concatenate together
599
+ conversations = []
600
+ for source in sources:
601
+ header = f"{conversation_lib.default_conversation.system}\n\n"
602
+ conversation = _add_speaker_and_signal(header, source)
603
+ conversations.append(conversation)
604
+ # tokenize conversations
605
+ def get_tokenize_len(prompts):
606
+ return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
607
+
608
+ if has_image:
609
+ input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
610
+ else:
611
+ conversations_tokenized = _tokenize_fn(conversations, tokenizer)
612
+ input_ids = conversations_tokenized["input_ids"]
613
+
614
+ targets = copy.deepcopy(input_ids)
615
+ for target, source in zip(targets, sources):
616
+ if has_image:
617
+ tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
618
+ else:
619
+ tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
620
+ speakers = [sentence["from"] for sentence in source]
621
+ _mask_targets(target, tokenized_lens, speakers)
622
+
623
+ return dict(input_ids=input_ids, labels=targets)
624
+
625
+
626
+ class LazySupervisedDataset(Dataset):
627
+ """Dataset for supervised fine-tuning."""
628
+
629
+ def __init__(self, data_path: str,
630
+ tokenizer: transformers.PreTrainedTokenizer,
631
+ data_args: DataArguments):
632
+ super(LazySupervisedDataset, self).__init__()
633
+ list_data_dict = json.load(open(data_path, "r"))
634
+
635
+ rank0_print("Formatting inputs...Skip in lazy mode")
636
+ self.tokenizer = tokenizer
637
+ self.list_data_dict = list_data_dict
638
+ self.data_args = data_args
639
+
640
+ def __len__(self):
641
+ return len(self.list_data_dict)
642
+
643
+ @property
644
+ def lengths(self):
645
+ length_list = []
646
+ for sample in self.list_data_dict:
647
+ img_tokens = 128 if 'image' in sample else 0
648
+ length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
649
+ return length_list
650
+
651
+ @property
652
+ def modality_lengths(self):
653
+ length_list = []
654
+ for sample in self.list_data_dict:
655
+ cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
656
+ cur_len = cur_len if 'image' in sample else -cur_len
657
+ length_list.append(cur_len)
658
+ return length_list
659
+
660
+ def __getitem__(self, i) -> Dict[str, torch.Tensor]:
661
+ sources = self.list_data_dict[i]
662
+ if isinstance(i, int):
663
+ sources = [sources]
664
+ assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
665
+ if 'image' in sources[0]:
666
+ image_file = self.list_data_dict[i]['image']
667
+ image_folder = self.data_args.image_folder
668
+ processor = self.data_args.image_processor
669
+ image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
670
+ if self.data_args.image_aspect_ratio == 'pad':
671
+ def expand2square(pil_img, background_color):
672
+ width, height = pil_img.size
673
+ if width == height:
674
+ return pil_img
675
+ elif width > height:
676
+ result = Image.new(pil_img.mode, (width, width), background_color)
677
+ result.paste(pil_img, (0, (width - height) // 2))
678
+ return result
679
+ else:
680
+ result = Image.new(pil_img.mode, (height, height), background_color)
681
+ result.paste(pil_img, ((height - width) // 2, 0))
682
+ return result
683
+ image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
684
+ image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
685
+ else:
686
+ image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
687
+ sources = preprocess_multimodal(
688
+ copy.deepcopy([e["conversations"] for e in sources]),
689
+ self.data_args)
690
+ else:
691
+ sources = copy.deepcopy([e["conversations"] for e in sources])
692
+ data_dict = preprocess(
693
+ sources,
694
+ self.tokenizer,
695
+ has_image=('image' in self.list_data_dict[i]))
696
+ if isinstance(i, int):
697
+ data_dict = dict(input_ids=data_dict["input_ids"][0],
698
+ labels=data_dict["labels"][0])
699
+
700
+ # image exist in the data
701
+ if 'image' in self.list_data_dict[i]:
702
+ data_dict['image'] = image
703
+ elif self.data_args.is_multimodal:
704
+ # image does not exist in the data, but the model is multimodal
705
+ crop_size = self.data_args.image_processor.crop_size
706
+ data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
707
+ return data_dict
708
+
709
+
710
+ @dataclass
711
+ class DataCollatorForSupervisedDataset(object):
712
+ """Collate examples for supervised fine-tuning."""
713
+
714
+ tokenizer: transformers.PreTrainedTokenizer
715
+
716
+ def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
717
+ input_ids, labels = tuple([instance[key] for instance in instances]
718
+ for key in ("input_ids", "labels"))
719
+ input_ids = torch.nn.utils.rnn.pad_sequence(
720
+ input_ids,
721
+ batch_first=True,
722
+ padding_value=self.tokenizer.pad_token_id)
723
+ labels = torch.nn.utils.rnn.pad_sequence(labels,
724
+ batch_first=True,
725
+ padding_value=IGNORE_INDEX)
726
+ input_ids = input_ids[:, :self.tokenizer.model_max_length]
727
+ labels = labels[:, :self.tokenizer.model_max_length]
728
+ batch = dict(
729
+ input_ids=input_ids,
730
+ labels=labels,
731
+ attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
732
+ )
733
+
734
+ if 'image' in instances[0]:
735
+ images = [instance['image'] for instance in instances]
736
+ if all(x is not None and x.shape == images[0].shape for x in images):
737
+ batch['images'] = torch.stack(images)
738
+ else:
739
+ batch['images'] = images
740
+
741
+ return batch
742
+
743
+
744
+ def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
745
+ data_args) -> Dict:
746
+ """Make dataset and collator for supervised fine-tuning."""
747
+ train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
748
+ data_path=data_args.data_path,
749
+ data_args=data_args)
750
+ data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
751
+ return dict(train_dataset=train_dataset,
752
+ eval_dataset=None,
753
+ data_collator=data_collator)
754
+
755
+
756
+ def train():
757
+ global local_rank
758
+
759
+ parser = transformers.HfArgumentParser(
760
+ (ModelArguments, DataArguments, TrainingArguments))
761
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
762
+ local_rank = training_args.local_rank
763
+ compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
764
+
765
+ bnb_model_from_pretrained_args = {}
766
+ if training_args.bits in [4, 8]:
767
+ from transformers import BitsAndBytesConfig
768
+ bnb_model_from_pretrained_args.update(dict(
769
+ device_map={"": training_args.device},
770
+ load_in_4bit=training_args.bits == 4,
771
+ load_in_8bit=training_args.bits == 8,
772
+ quantization_config=BitsAndBytesConfig(
773
+ load_in_4bit=training_args.bits == 4,
774
+ load_in_8bit=training_args.bits == 8,
775
+ llm_int8_threshold=6.0,
776
+ llm_int8_has_fp16_weight=False,
777
+ bnb_4bit_compute_dtype=compute_dtype,
778
+ bnb_4bit_use_double_quant=training_args.double_quant,
779
+ bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
780
+ )
781
+ ))
782
+
783
+ if model_args.vision_tower is not None:
784
+ if 'mpt' in model_args.model_name_or_path:
785
+ config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
786
+ config.attn_config['attn_impl'] = training_args.mpt_attn_impl
787
+ model = LlavaMPTForCausalLM.from_pretrained(
788
+ model_args.model_name_or_path,
789
+ config=config,
790
+ cache_dir=training_args.cache_dir,
791
+ **bnb_model_from_pretrained_args
792
+ )
793
+ else:
794
+ model = LlavaLlamaForCausalLM.from_pretrained(
795
+ model_args.model_name_or_path,
796
+ cache_dir=training_args.cache_dir,
797
+ **bnb_model_from_pretrained_args
798
+ )
799
+ else:
800
+ model = transformers.LlamaForCausalLM.from_pretrained(
801
+ model_args.model_name_or_path,
802
+ cache_dir=training_args.cache_dir,
803
+ **bnb_model_from_pretrained_args
804
+ )
805
+ model.config.use_cache = False
806
+
807
+ if model_args.freeze_backbone:
808
+ model.model.requires_grad_(False)
809
+
810
+ if training_args.bits in [4, 8]:
811
+ from peft import prepare_model_for_kbit_training
812
+ model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
813
+ model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
814
+
815
+ if training_args.gradient_checkpointing:
816
+ if hasattr(model, "enable_input_require_grads"):
817
+ model.enable_input_require_grads()
818
+ else:
819
+ def make_inputs_require_grad(module, input, output):
820
+ output.requires_grad_(True)
821
+ model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
822
+
823
+ if training_args.lora_enable:
824
+ from peft import LoraConfig, get_peft_model
825
+ lora_config = LoraConfig(
826
+ r=training_args.lora_r,
827
+ lora_alpha=training_args.lora_alpha,
828
+ target_modules=find_all_linear_names(model),
829
+ lora_dropout=training_args.lora_dropout,
830
+ bias=training_args.lora_bias,
831
+ task_type="CAUSAL_LM",
832
+ )
833
+ if training_args.bits == 16:
834
+ if training_args.bf16:
835
+ model.to(torch.bfloat16)
836
+ if training_args.fp16:
837
+ model.to(torch.float16)
838
+ rank0_print("Adding LoRA adapters...")
839
+ model = get_peft_model(model, lora_config)
840
+
841
+ if 'mpt' in model_args.model_name_or_path:
842
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
843
+ model_args.model_name_or_path,
844
+ cache_dir=training_args.cache_dir,
845
+ model_max_length=training_args.model_max_length,
846
+ padding_side="right"
847
+ )
848
+ else:
849
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
850
+ model_args.model_name_or_path,
851
+ cache_dir=training_args.cache_dir,
852
+ model_max_length=training_args.model_max_length,
853
+ padding_side="right",
854
+ use_fast=False,
855
+ )
856
+
857
+ if model_args.version == "v0":
858
+ if tokenizer.pad_token is None:
859
+ smart_tokenizer_and_embedding_resize(
860
+ special_tokens_dict=dict(pad_token="[PAD]"),
861
+ tokenizer=tokenizer,
862
+ model=model,
863
+ )
864
+ elif model_args.version == "v0.5":
865
+ tokenizer.pad_token = tokenizer.unk_token
866
+ else:
867
+ tokenizer.pad_token = tokenizer.unk_token
868
+ if model_args.version in conversation_lib.conv_templates:
869
+ conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
870
+ else:
871
+ conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
872
+
873
+ if model_args.vision_tower is not None:
874
+ model.get_model().initialize_vision_modules(
875
+ model_args=model_args,
876
+ fsdp=training_args.fsdp
877
+ )
878
+
879
+ vision_tower = model.get_vision_tower()
880
+ vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
881
+
882
+ data_args.image_processor = vision_tower.image_processor
883
+ data_args.is_multimodal = True
884
+
885
+ model.config.image_aspect_ratio = data_args.image_aspect_ratio
886
+ model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
887
+
888
+ model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
889
+ if model_args.tune_mm_mlp_adapter:
890
+ model.requires_grad_(False)
891
+ for p in model.get_model().mm_projector.parameters():
892
+ p.requires_grad = True
893
+
894
+ model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
895
+ if training_args.freeze_mm_mlp_adapter:
896
+ for p in model.get_model().mm_projector.parameters():
897
+ p.requires_grad = False
898
+
899
+ if training_args.bits in [4, 8]:
900
+ model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
901
+
902
+ model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
903
+ training_args.use_im_start_end = model_args.mm_use_im_start_end
904
+ model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
905
+ model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
906
+
907
+ if training_args.bits in [4, 8]:
908
+ from peft.tuners.lora import LoraLayer
909
+ for name, module in model.named_modules():
910
+ if isinstance(module, LoraLayer):
911
+ if training_args.bf16:
912
+ module = module.to(torch.bfloat16)
913
+ if 'norm' in name:
914
+ module = module.to(torch.float32)
915
+ if 'lm_head' in name or 'embed_tokens' in name:
916
+ if hasattr(module, 'weight'):
917
+ if training_args.bf16 and module.weight.dtype == torch.float32:
918
+ module = module.to(torch.bfloat16)
919
+
920
+ data_module = make_supervised_data_module(tokenizer=tokenizer,
921
+ data_args=data_args)
922
+ trainer = LLaVATrainer(model=model,
923
+ tokenizer=tokenizer,
924
+ args=training_args,
925
+ **data_module)
926
+
927
+ if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
928
+ trainer.train(resume_from_checkpoint=True)
929
+ else:
930
+ trainer.train()
931
+ trainer.save_state()
932
+
933
+ model.config.use_cache = True
934
+
935
+ if training_args.lora_enable:
936
+ state_dict = get_peft_state_maybe_zero_3(
937
+ model.named_parameters(), training_args.lora_bias
938
+ )
939
+ non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
940
+ model.named_parameters()
941
+ )
942
+ if training_args.local_rank == 0 or training_args.local_rank == -1:
943
+ model.config.save_pretrained(training_args.output_dir)
944
+ model.save_pretrained(training_args.output_dir, state_dict=state_dict)
945
+ torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
946
+ else:
947
+ safe_save_model_for_hf_trainer(trainer=trainer,
948
+ output_dir=training_args.output_dir)
949
+
950
+
951
+ if __name__ == "__main__":
952
+ train()
llava/train/train_mem.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
2
+ # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
3
+ # Make it more memory efficient by monkey patching the LLaMA model with FlashAttn.
4
+
5
+ # Need to call this before importing transformers.
6
+ from llava.train.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
7
+
8
+ replace_llama_attn_with_flash_attn()
9
+
10
+ from llava.train.train import train
11
+
12
+ if __name__ == "__main__":
13
+ train()