Update app.py
Browse files
app.py
CHANGED
|
@@ -2,10 +2,10 @@ import base64
|
|
| 2 |
import gradio as gr
|
| 3 |
import random
|
| 4 |
from fastai.vision.all import *
|
| 5 |
-
from openai import OpenAI
|
| 6 |
from pathlib import Path
|
| 7 |
from PIL import Image
|
| 8 |
import io
|
|
|
|
| 9 |
|
| 10 |
# Dictionary of plant names and their Wikipedia links
|
| 11 |
search_terms_wikipedia = {
|
|
@@ -90,6 +90,11 @@ example_images = [
|
|
| 90 |
str(Path('example_images/example_5.jpg'))
|
| 91 |
]
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# Main function to process the uploaded image
|
| 95 |
def process_image(img, generate_image=True):
|
|
@@ -109,20 +114,21 @@ def process_image(img, generate_image=True):
|
|
| 109 |
endangerment_status = get_status(predicted_class)
|
| 110 |
print(f"Status found: {endangerment_status}")
|
| 111 |
|
| 112 |
-
# Generate artistic interpretation using
|
| 113 |
-
print("Sending request to
|
| 114 |
try:
|
| 115 |
-
client = OpenAI()
|
| 116 |
-
|
| 117 |
if generate_image:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
image_bytes = base64.b64decode(image_base64)
|
| 127 |
generated_image = Image.open(io.BytesIO(image_bytes))
|
| 128 |
else:
|
|
@@ -142,7 +148,7 @@ def clear_outputs():
|
|
| 142 |
label_output: None,
|
| 143 |
generated_image: None,
|
| 144 |
wiki_output: None,
|
| 145 |
-
endangerment_output: None
|
| 146 |
}
|
| 147 |
|
| 148 |
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import random
|
| 4 |
from fastai.vision.all import *
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
+
import fal
|
| 9 |
|
| 10 |
# Dictionary of plant names and their Wikipedia links
|
| 11 |
search_terms_wikipedia = {
|
|
|
|
| 90 |
str(Path('example_images/example_5.jpg'))
|
| 91 |
]
|
| 92 |
|
| 93 |
+
# Function to handle FAL queue updates
|
| 94 |
+
def on_queue_update(update):
|
| 95 |
+
"""Handle queue updates from FAL."""
|
| 96 |
+
print(f"Queue update: {update}")
|
| 97 |
+
|
| 98 |
|
| 99 |
# Main function to process the uploaded image
|
| 100 |
def process_image(img, generate_image=True):
|
|
|
|
| 114 |
endangerment_status = get_status(predicted_class)
|
| 115 |
print(f"Status found: {endangerment_status}")
|
| 116 |
|
| 117 |
+
# Generate artistic interpretation using FAL
|
| 118 |
+
print("Sending request to FAL...")
|
| 119 |
try:
|
|
|
|
|
|
|
| 120 |
if generate_image:
|
| 121 |
+
prompt = random.choice(prompt_templates).format(flower=predicted_class)
|
| 122 |
+
|
| 123 |
+
# Use fal-client to generate image
|
| 124 |
+
result = fal.subscribe(
|
| 125 |
+
"fal-ai/flux/dev",
|
| 126 |
+
input={"prompt": prompt},
|
| 127 |
+
on_queue_update=on_queue_update
|
| 128 |
)
|
| 129 |
+
|
| 130 |
+
# Get the image from the result
|
| 131 |
+
image_base64 = result["images"][0]
|
| 132 |
image_bytes = base64.b64decode(image_base64)
|
| 133 |
generated_image = Image.open(io.BytesIO(image_bytes))
|
| 134 |
else:
|
|
|
|
| 148 |
label_output: None,
|
| 149 |
generated_image: None,
|
| 150 |
wiki_output: None,
|
| 151 |
+
endangerment_output: None
|
| 152 |
}
|
| 153 |
|
| 154 |
|