Spaces:
Runtime error
Runtime error
import os | |
import jsonlines | |
from uuid import uuid4 | |
import pandas as pd | |
from datasets import load_dataset | |
import subprocess | |
# from dotenv import load_dotenv,find_dotenv | |
# load_dotenv(find_dotenv(),override=True) | |
# Load dataset | |
dataset_name = 'ai-aerospace/ams_data_train_generic_v0.1_100' | |
dataset=load_dataset(dataset_name) | |
# Write dataset files into data directory | |
data_directory = './fine_tune_data/' | |
# Create the data directory if it doesn't exist | |
os.makedirs(data_directory, exist_ok=True) | |
# Write the train data to a CSV file | |
train_data='train_data.csv' | |
train_filename = os.path.join(data_directory, train_data) | |
dataset['train'].to_pandas().to_csv(train_filename, columns=['text'], index=False) | |
# Write the validation data to a CSV file | |
validation_data='validation_data.csv' | |
validation_filename = os.path.join(data_directory, validation_data) | |
dataset['validation'].to_pandas().to_csv(validation_filename, columns=['text'], index=False) | |
# Define project parameters | |
username='ai-aerospace' | |
project_name='./llms/'+'ams_data_train-100_'+str(uuid4()) | |
repo_name='ams_data_train-100_'+str(uuid4()) | |
model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1' | |
# model_name='mistralai/Mistral-7B-v0.1' | |
# Save parameters to environment variables | |
os.environ["project_name"] = project_name | |
os.environ["model_name"] = model_name | |
os.environ["repo_id"] = username+'/'+repo_name | |
os.environ["train_data"] = train_data | |
os.environ["validation_data"] = validation_data | |
# Set .venv and execute the autotrain script | |
# To see all parameters: autotrain llm --help | |
# !autotrain llm --train --project_name my-llm --model TinyLlama/TinyLlama-1.1B-Chat-v0.1 --data_path . --use-peft --use_int4 --learning_rate 2e-4 --train_batch_size 6 --num_train_epochs 3 --trainer sft | |
# The training dataset to be used must be called training.csv and be located in the data_path folder. | |
command=""" | |
autotrain llm --train \ | |
--project_name ${project_name} \ | |
--model ${model_name} \ | |
--data_path ../fine_tune_data \ | |
--train_split ${train_data} \ | |
--valid_split ${validation_data} \ | |
--use-peft \ | |
--learning_rate 2e-4 \ | |
--train_batch_size 6 \ | |
--num_train_epochs 3 \ | |
--trainer sft \ | |
--push_to_hub \ | |
--repo_id ${repo_id} \ | |
--token $HUGGINGFACE_TOKEN | |
""" | |
# Use subprocess.run() to execute the command | |
subprocess.run(command, shell=True, check=True) |