Spaces:
Sleeping
Sleeping
danielhshi8224
commited on
Commit
Β·
ee88f70
1
Parent(s):
9d06c04
update for multi image
Browse files
app.py
CHANGED
|
@@ -1,112 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
# Get model path (Windows compatible)
|
| 8 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 9 |
MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
| 10 |
|
| 11 |
-
# Try different possible filenames
|
| 12 |
-
# possible_names = ['ConvNextmodel.pth', 'convnextmodel.pth', 'ConvNext_model.pth']
|
| 13 |
-
# model_path = None
|
| 14 |
-
|
| 15 |
-
# for name in possible_names:
|
| 16 |
-
# test_path = os.path.join(BASE_DIR, name)
|
| 17 |
-
# if os.path.exists(test_path):
|
| 18 |
-
# model_path = test_path
|
| 19 |
-
# print(f"β Found model: {name}")
|
| 20 |
-
# break
|
| 21 |
-
|
| 22 |
-
# if model_path is None:
|
| 23 |
-
# raise FileNotFoundError(f"Could not find model file. Tried: {possible_names}")
|
| 24 |
-
|
| 25 |
-
# Species categories (7 classes)
|
| 26 |
-
SPECIES_CATEGORIES = [
|
| 27 |
-
'Eel',
|
| 28 |
-
'Scallop',
|
| 29 |
-
'Crab',
|
| 30 |
-
'Flatfish',
|
| 31 |
-
'Roundfish',
|
| 32 |
-
'Skate',
|
| 33 |
-
'Whelk'
|
| 34 |
-
]
|
| 35 |
-
|
| 36 |
-
# Load model
|
| 37 |
print(f"Loading model from: {MODEL_ID}")
|
| 38 |
-
|
| 39 |
-
# 'facebook/convnext-tiny-224',
|
| 40 |
-
# num_labels=7,
|
| 41 |
-
# ignore_mismatched_sizes=True
|
| 42 |
-
# )
|
| 43 |
-
processor=AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224')
|
| 44 |
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
|
|
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# checkpoint = checkpoint['state_dict']
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
"""
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
image: PIL Image or numpy array
|
| 67 |
-
|
| 68 |
Returns:
|
| 69 |
-
|
|
|
|
| 70 |
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
with torch.no_grad():
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
fn=classify_image,
|
| 94 |
inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 95 |
-
outputs=gr.Label(num_top_classes=
|
| 96 |
-
title="π BenthicAI -
|
| 97 |
-
description="
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
)
|
| 106 |
|
|
|
|
|
|
|
| 107 |
if __name__ == "__main__":
|
| 108 |
-
demo.launch(
|
| 109 |
-
|
| 110 |
-
server_port=7860,
|
| 111 |
-
share=True # Set to True to get a public URL
|
| 112 |
-
)
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import torch
|
| 3 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
+
# from PIL import Image
|
| 5 |
+
# import os
|
| 6 |
+
|
| 7 |
+
# # Get model path (Windows compatible)
|
| 8 |
+
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 9 |
+
# MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
| 10 |
+
|
| 11 |
+
# # Try different possible filenames
|
| 12 |
+
# # possible_names = ['ConvNextmodel.pth', 'convnextmodel.pth', 'ConvNext_model.pth']
|
| 13 |
+
# # model_path = None
|
| 14 |
+
|
| 15 |
+
# # for name in possible_names:
|
| 16 |
+
# # test_path = os.path.join(BASE_DIR, name)
|
| 17 |
+
# # if os.path.exists(test_path):
|
| 18 |
+
# # model_path = test_path
|
| 19 |
+
# # print(f"β Found model: {name}")
|
| 20 |
+
# # break
|
| 21 |
+
|
| 22 |
+
# # if model_path is None:
|
| 23 |
+
# # raise FileNotFoundError(f"Could not find model file. Tried: {possible_names}")
|
| 24 |
+
|
| 25 |
+
# # Species categories (7 classes)
|
| 26 |
+
# SPECIES_CATEGORIES = [
|
| 27 |
+
# 'Eel',
|
| 28 |
+
# 'Scallop',
|
| 29 |
+
# 'Crab',
|
| 30 |
+
# 'Flatfish',
|
| 31 |
+
# 'Roundfish',
|
| 32 |
+
# 'Skate',
|
| 33 |
+
# 'Whelk'
|
| 34 |
+
# ]
|
| 35 |
+
|
| 36 |
+
# # Load model
|
| 37 |
+
# print(f"Loading model from: {MODEL_ID}")
|
| 38 |
+
# # model = AutoModelForImageClassification.from_pretrained(
|
| 39 |
+
# # 'facebook/convnext-tiny-224',
|
| 40 |
+
# # num_labels=7,
|
| 41 |
+
# # ignore_mismatched_sizes=True
|
| 42 |
+
# # )
|
| 43 |
+
# processor=AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224')
|
| 44 |
+
# model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 45 |
+
|
| 46 |
+
# # Load weights
|
| 47 |
+
# # checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
|
| 48 |
+
# # if isinstance(checkpoint, dict):
|
| 49 |
+
# # if 'model' in checkpoint:
|
| 50 |
+
# # checkpoint = checkpoint['model']
|
| 51 |
+
# # elif 'state_dict' in checkpoint:
|
| 52 |
+
# # checkpoint = checkpoint['state_dict']
|
| 53 |
+
|
| 54 |
+
# # model.load_state_dict(checkpoint, strict=False)
|
| 55 |
+
# # model.eval()
|
| 56 |
+
|
| 57 |
+
# # Load processor
|
| 58 |
+
# # processor = AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224')
|
| 59 |
+
# # print("β Model loaded successfully!")
|
| 60 |
+
|
| 61 |
+
# def classify_image(image):
|
| 62 |
+
# """
|
| 63 |
+
# Classify a benthic species image.
|
| 64 |
+
|
| 65 |
+
# Args:
|
| 66 |
+
# image: PIL Image or numpy array
|
| 67 |
+
|
| 68 |
+
# Returns:
|
| 69 |
+
# dict: Predictions with species names and confidence scores
|
| 70 |
+
# """
|
| 71 |
+
# # Convert to PIL if needed
|
| 72 |
+
# if not isinstance(image, Image.Image):
|
| 73 |
+
# image = Image.fromarray(image).convert('RGB')
|
| 74 |
+
|
| 75 |
+
# # Preprocess
|
| 76 |
+
# inputs = processor(images=image, return_tensors="pt")
|
| 77 |
+
|
| 78 |
+
# # Predict
|
| 79 |
+
# with torch.no_grad():
|
| 80 |
+
# outputs = model(**inputs)
|
| 81 |
+
# logits = outputs.logits
|
| 82 |
+
# probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 83 |
+
|
| 84 |
+
# # Create results dictionary for Gradio
|
| 85 |
+
# results = {}
|
| 86 |
+
# for idx, prob in enumerate(probabilities[0]):
|
| 87 |
+
# results[SPECIES_CATEGORIES[idx]] = float(prob)
|
| 88 |
+
|
| 89 |
+
# return results
|
| 90 |
+
|
| 91 |
+
# # Create Gradio interface
|
| 92 |
+
# demo = gr.Interface(
|
| 93 |
+
# fn=classify_image,
|
| 94 |
+
# inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 95 |
+
# outputs=gr.Label(num_top_classes=7, label="Species Classification"),
|
| 96 |
+
# title="π BenthicAI - Benthic Species Classifier",
|
| 97 |
+
# description="Upload an image of a benthic organism to classify it into one of 7 species categories. Built with ConvNeXT transformer model.",
|
| 98 |
+
# examples=[
|
| 99 |
+
# [os.path.join("examples", "eel.jpg")],
|
| 100 |
+
# [os.path.join("examples", "scallop.jpg")],
|
| 101 |
+
# [os.path.join("examples", "crab.jpg")],
|
| 102 |
+
# ] if os.path.exists("examples") else None,
|
| 103 |
+
# theme=gr.themes.Soft(),
|
| 104 |
+
# allow_flagging="never"
|
| 105 |
+
# )
|
| 106 |
+
|
| 107 |
+
# if __name__ == "__main__":
|
| 108 |
+
# demo.launch(
|
| 109 |
+
# server_name="0.0.0.0",
|
| 110 |
+
# server_port=7860,
|
| 111 |
+
# share=True # Set to True to get a public URL
|
| 112 |
+
# )
|
| 113 |
import gradio as gr
|
| 114 |
import torch
|
| 115 |
+
import torch.nn.functional as F
|
| 116 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 117 |
from PIL import Image
|
| 118 |
import os
|
| 119 |
|
|
|
|
| 120 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 121 |
MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
print(f"Loading model from: {MODEL_ID}")
|
| 124 |
+
processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 126 |
+
model.eval()
|
| 127 |
|
| 128 |
+
# (Optional) use model's own labels if present
|
| 129 |
+
ID2LABEL = (
|
| 130 |
+
[model.config.id2label[str(i)] for i in range(model.config.num_labels)]
|
| 131 |
+
if getattr(model.config, "id2label", None)
|
| 132 |
+
else ['Eel','Scallop','Crab','Flatfish','Roundfish','Skate','Whelk']
|
| 133 |
+
)
|
|
|
|
| 134 |
|
| 135 |
+
def classify_image(image):
|
| 136 |
+
if not isinstance(image, Image.Image):
|
| 137 |
+
image = Image.fromarray(image).convert("RGB")
|
| 138 |
|
| 139 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
logits = model(**inputs).logits
|
| 142 |
+
probs = F.softmax(logits, dim=1)[0].tolist()
|
| 143 |
|
| 144 |
+
return {ID2LABEL[i]: float(p) for i, p in enumerate(probs)}
|
| 145 |
+
|
| 146 |
+
# ---------- NEW: batch classify up to 10 images ----------
|
| 147 |
+
MAX_BATCH = 10
|
| 148 |
+
|
| 149 |
+
def classify_images_batch(files):
|
| 150 |
"""
|
| 151 |
+
files: list of gradio UploadedFile (paths) or None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
Returns:
|
| 153 |
+
- gallery: list of (image, caption)
|
| 154 |
+
- table: list of rows for Dataframe
|
| 155 |
"""
|
| 156 |
+
if not files:
|
| 157 |
+
return [], []
|
| 158 |
+
|
| 159 |
+
# Keep at most 10
|
| 160 |
+
files = files[:MAX_BATCH]
|
| 161 |
+
|
| 162 |
+
# Load as PIL
|
| 163 |
+
pil_images, names = [], []
|
| 164 |
+
for f in files:
|
| 165 |
+
path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
| 166 |
+
try:
|
| 167 |
+
img = Image.open(path).convert("RGB")
|
| 168 |
+
pil_images.append(img)
|
| 169 |
+
names.append(os.path.basename(path))
|
| 170 |
+
except Exception:
|
| 171 |
+
# Skip unreadable file
|
| 172 |
+
continue
|
| 173 |
+
|
| 174 |
+
if not pil_images:
|
| 175 |
+
return [], []
|
| 176 |
+
|
| 177 |
+
# Batch preprocess + forward
|
| 178 |
+
inputs = processor(images=pil_images, return_tensors="pt")
|
| 179 |
with torch.no_grad():
|
| 180 |
+
logits = model(**inputs).logits
|
| 181 |
+
probs = F.softmax(logits, dim=1)
|
| 182 |
+
|
| 183 |
+
# Build outputs
|
| 184 |
+
gallery = []
|
| 185 |
+
table_rows = [] # [filename, top1_label, top1_conf, top3_labels, top3_confs]
|
| 186 |
+
|
| 187 |
+
for idx, (img, fname) in enumerate(zip(pil_images, names)):
|
| 188 |
+
p = probs[idx].tolist()
|
| 189 |
+
top_idxs = sorted(range(len(p)), key=lambda i: p[i], reverse=True)[:3]
|
| 190 |
+
top1 = top_idxs[0]
|
| 191 |
+
caption = f"{ID2LABEL[top1]} ({p[top1]:.2%})"
|
| 192 |
+
|
| 193 |
+
gallery.append((img, f"{fname}\n{caption}"))
|
| 194 |
|
| 195 |
+
top3_labels = [ID2LABEL[i] for i in top_idxs]
|
| 196 |
+
top3_scores = [round(p[i], 4) for i in top_idxs]
|
| 197 |
+
table_rows.append([
|
| 198 |
+
fname,
|
| 199 |
+
ID2LABEL[top1],
|
| 200 |
+
round(p[top1], 4),
|
| 201 |
+
", ".join(top3_labels),
|
| 202 |
+
", ".join(map(str, top3_scores)),
|
| 203 |
+
])
|
| 204 |
+
|
| 205 |
+
return gallery, table_rows
|
| 206 |
+
|
| 207 |
+
# ---------- UI ----------
|
| 208 |
+
single = gr.Interface(
|
| 209 |
fn=classify_image,
|
| 210 |
inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 211 |
+
outputs=gr.Label(num_top_classes=len(ID2LABEL), label="Species Classification"),
|
| 212 |
+
title="π BenthicAI - Single Image",
|
| 213 |
+
description="Classify one image into one of 7 benthic species."
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
batch = gr.Interface(
|
| 217 |
+
fn=classify_images_batch,
|
| 218 |
+
inputs=gr.Files(label="Upload up to 10 images"),
|
| 219 |
+
outputs=[
|
| 220 |
+
gr.Gallery(label="Results (Top-1 in caption)").style(grid=3, height=500),
|
| 221 |
+
gr.Dataframe(
|
| 222 |
+
headers=["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"],
|
| 223 |
+
label="Predictions Table",
|
| 224 |
+
wrap=True
|
| 225 |
+
)
|
| 226 |
+
],
|
| 227 |
+
title="π BenthicAI - Batch (up to 10)",
|
| 228 |
+
description="Upload multiple images (max 10). Outputs a gallery with captions and a table of top predictions.",
|
| 229 |
)
|
| 230 |
|
| 231 |
+
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
|
| 232 |
+
|
| 233 |
if __name__ == "__main__":
|
| 234 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
| 235 |
+
|
|
|
|
|
|
|
|
|