|
import cv2
|
|
import cvzone
|
|
import numpy as np
|
|
|
|
|
|
def batsman_detect(img, rgb_lower, rgb_upper, canny_threshold1=100, canny_threshold2=200):
|
|
"""
|
|
Detects a batsman in an image frame using color-based filtering and edge detection.
|
|
|
|
Args:
|
|
img: The input image frame (BGR format).
|
|
rgb_lower: NumPy array defining the lower bound of the RGB color range for batsman. e.g., np.array([112, 0, 181])
|
|
rgb_upper: NumPy array defining the upper bound of the RGB color range for batsman. e.g., np.array([255, 255, 255])
|
|
canny_threshold1: Lower threshold for Canny edge detection.
|
|
canny_threshold2: Upper threshold for Canny edge detection.
|
|
|
|
Returns:
|
|
contours: A list of contours detected in the color-masked and edge-processed image,
|
|
presumed to be the batsman. Returns an empty list if no contours are found.
|
|
"""
|
|
img_gray_rgb = cv2.cvtColor(
|
|
img, cv2.COLOR_BGR2RGB
|
|
)
|
|
img_blur = cv2.GaussianBlur(
|
|
img_gray_rgb, (5, 5), 1
|
|
)
|
|
|
|
|
|
img_canny = cv2.Canny(img_blur, canny_threshold1, canny_threshold2)
|
|
|
|
|
|
kernel = np.ones((5, 5))
|
|
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
|
|
img_threshold = cv2.erode(
|
|
img_dilate, kernel, iterations=2
|
|
)
|
|
|
|
|
|
mask = cv2.inRange(img_gray_rgb, rgb_lower, rgb_upper)
|
|
|
|
|
|
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
return contours
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cap = cv2.VideoCapture(r"lbw.mp4")
|
|
|
|
|
|
default_rgb_lower = np.array([112, 0, 181])
|
|
default_rgb_upper = np.array([255, 255, 255])
|
|
|
|
|
|
default_canny_threshold1 = 100
|
|
default_canny_threshold2 = 200
|
|
|
|
def empty(a):
|
|
pass
|
|
|
|
|
|
cv2.namedWindow("Trackbars")
|
|
cv2.resizeWindow(
|
|
"Trackbars", 640, 480
|
|
)
|
|
cv2.createTrackbar("R Min", "Trackbars", default_rgb_lower[0], 255, empty)
|
|
cv2.createTrackbar("G Min", "Trackbars", default_rgb_lower[1], 255, empty)
|
|
cv2.createTrackbar("B Min", "Trackbars", default_rgb_lower[2], 255, empty)
|
|
cv2.createTrackbar("R Max", "Trackbars", default_rgb_upper[0], 255, empty)
|
|
cv2.createTrackbar("G Max", "Trackbars", default_rgb_upper[1], 255, empty)
|
|
cv2.createTrackbar("B Max", "Trackbars", default_rgb_upper[2], 255, empty)
|
|
cv2.createTrackbar(
|
|
"Canny Thresh 1", "Trackbars", default_canny_threshold1, 255, empty
|
|
)
|
|
cv2.createTrackbar(
|
|
"Canny Thresh 2", "Trackbars", default_canny_threshold2, 255, empty
|
|
)
|
|
|
|
while True:
|
|
frame, img = cap.read()
|
|
if not frame:
|
|
break
|
|
|
|
|
|
rgb_lower = np.array(
|
|
[
|
|
cv2.getTrackbarPos("R Min", "Trackbars"),
|
|
cv2.getTrackbarPos("G Min", "Trackbars"),
|
|
cv2.getTrackbarPos("B Min", "Trackbars"),
|
|
]
|
|
)
|
|
rgb_upper = np.array(
|
|
[
|
|
cv2.getTrackbarPos("R Max", "Trackbars"),
|
|
cv2.getTrackbarPos("G Max", "Trackbars"),
|
|
cv2.getTrackbarPos("B Max", "Trackbars"),
|
|
]
|
|
)
|
|
|
|
|
|
canny_threshold1 = cv2.getTrackbarPos("Canny Thresh 1", "Trackbars")
|
|
canny_threshold2 = cv2.getTrackbarPos("Canny Thresh 2", "Trackbars")
|
|
|
|
|
|
batsman_contours = batsman_detect(
|
|
img, rgb_lower, rgb_upper, canny_threshold1, canny_threshold2
|
|
)
|
|
|
|
img_contours = img.copy()
|
|
for cnt in batsman_contours:
|
|
if (
|
|
cv2.contourArea(cnt) > 5000
|
|
):
|
|
cv2.drawContours(
|
|
img_contours, cnt, -1, (0, 255, 0), 2
|
|
)
|
|
|
|
img_mask = cv2.inRange(
|
|
cv2.cvtColor(img, cv2.COLOR_BGR2RGB), rgb_lower, rgb_upper
|
|
)
|
|
|
|
img_stack = cvzone.stackImages(
|
|
[img, img_mask, img_contours], 3, 0.5
|
|
)
|
|
cv2.imshow("Batsman Detection Tuning", img_stack)
|
|
|
|
key = cv2.waitKey(1)
|
|
if key == ord("q"):
|
|
break
|
|
elif key == ord("s"):
|
|
print("Saved RGB lower:", rgb_lower)
|
|
print("Saved RGB upper:", rgb_upper)
|
|
print("Saved Canny Threshold 1:", canny_threshold1)
|
|
print("Saved Canny Threshold 2:", canny_threshold2)
|
|
print(
|
|
"--- Copy these values to your main.py or default_rgb_lower/upper in batsman.py ---"
|
|
)
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
|