Spaces:
Runtime error
Runtime error
| # Import necessary libraries | |
| import numpy as np | |
| import gradio as gr | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchvision import transforms | |
| from PIL import Image | |
| # Define the neural network model using PyTorch | |
| class Net(nn.Module): | |
| def __init__(self): | |
| super(Net, self).__init__() | |
| self.fc1 = nn.Linear(28 * 28, 128) | |
| self.fc2 = nn.Linear(128, 64) | |
| self.fc3 = nn.Linear(64, 10) | |
| def forward(self, x): | |
| x = x.view(-1, 28 * 28) # Flatten the input | |
| x = F.relu(self.fc1(x)) | |
| x = F.relu(self.fc2(x)) | |
| x = self.fc3(x) | |
| return F.log_softmax(x, dim=1) | |
| # Initialize the model and load the trained weights | |
| model = Net() | |
| model.load_state_dict(torch.load('mnist_model.pth')) | |
| model.eval() | |
| # Define the image transformations | |
| transform = transforms.Compose([ | |
| transforms.Resize((28, 28)), # Resize image to 28x28 | |
| transforms.Grayscale(), # Convert to grayscale | |
| transforms.ToTensor(), # Convert to tensor | |
| transforms.Normalize((0.5,), (0.5,)) # Normalize | |
| ]) | |
| # Define the prediction function | |
| def predict_image(img): | |
| img = transform(img) # Apply transformations | |
| img = img.unsqueeze(0) # Add batch dimension | |
| with torch.no_grad(): | |
| output = model(img) | |
| predicted_digit = output.argmax(dim=1).item() | |
| return predicted_digit | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_image, | |
| inputs=gr.inputs.Image(shape=(28, 28), image_mode='L', invert_colors=False), | |
| outputs='label', | |
| live=True, | |
| description="Upload an image of a handwritten digit, and the model will predict the digit." | |
| ) | |
| # Launch the Gradio interface | |
| if __name__ == '__main__': | |
| iface.launch() | |