Spaces:
Running
on
Zero
Running
on
Zero
# v-diffusion codes for DDPM inpainting. May not be compatible with k-diffusion. | |
# @SuspectT's inpainting codes, Feb 25 2024 | |
# shared w/ me over Discord: | |
# "that's the v-diffusion inpainting with ddpm | |
# optimal settings were around 100 steps for the scheduler | |
# (ts refering to timesteps here) and resamples was 4" | |
import torch | |
from torch import nn | |
from typing import Callable | |
from tqdm import trange | |
import math | |
import sys | |
# from kcrowson/v-diffusion-pytorch | |
def t_to_alpha_sigma(t): | |
"""Returns the scaling factors for the clean image and for the noise, given | |
a timestep.""" | |
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2) | |
#class DDPM(SamplerBase): | |
class DDPM(): | |
def __init__(self, model_fn: Callable = None): | |
super().__init__() | |
def _step( | |
self, model_fn: Callable, x_t: torch.Tensor, step: int, | |
t_now: torch.Tensor, t_next: torch.Tensor, | |
callback: Callable, model_args, **sampler_args ) -> torch.Tensor: | |
alpha_now, sigma_now = t_to_alpha_sigma(t_now) # Get alpha / sigma for current timestep. | |
alpha_next, sigma_next = t_to_alpha_sigma(t_next) # Get alpha / sigma for next timestep. | |
v_t = model_fn(x_t, t_now.expand(x_t.shape[0]), **model_args) # Expand t to match batch_size which corresponds to x_t.shape[0] | |
eps_t = x_t * sigma_now + v_t * alpha_now | |
pred_t = x_t * alpha_now - v_t * sigma_now | |
if callback is not None: | |
callback({'step': step, 'x': x_t, 't': t_now, 'pred': pred_t, 'eps': eps_t}) | |
return (pred_t * alpha_next + eps_t * sigma_next) | |
def _sample( self, model_fn: Callable, x_t: torch.Tensor, ts: torch.Tensor, | |
callback: Callable, model_args, **sampler_args ) -> torch.Tensor: | |
print("Using DDPM Sampler.") | |
steps = ts.size(0) | |
use_tqdm = sampler_args.get('use_tqdm') | |
use_range = trange if (use_tqdm if (use_tqdm != None) else False) else range | |
for step in use_range(steps - 1): | |
x_t = self._step( model_fn, x_t, step, ts[step], ts[step + 1], | |
lambda kwargs: callback(**dict(kwargs, steps=steps)) if(callback != None) else None, | |
model_args ) | |
return x_t | |
def _inpaint(self, | |
model_fn: Callable, audio_source: torch.Tensor, mask: torch.Tensor, | |
ts: torch.Tensor, resamples: int, callback: Callable, model_args, **sampler_args | |
) -> torch.Tensor: | |
steps = ts.size(0) | |
batch_size = audio_source.size(0) | |
alphas, sigmas = t_to_alpha_sigma(ts) | |
# SHH: rescale audio_source to zero mean and unit variance | |
audio_source = (audio_source - audio_source.mean()) / audio_source.std() | |
x_t = audio_source | |
use_tqdm = sampler_args.get('use_tqdm') | |
use_range = trange if (use_tqdm if (use_tqdm != None) else False) else range | |
for step in use_range(steps - 1): | |
print("step, audio_source.min, audio_source.max, alphas[step], sigmas[step] = ", step, audio_source.min(), audio_source.max(), alphas[step], sigmas[step]) | |
audio_source_noised = audio_source * alphas[step] + torch.randn_like(audio_source) * sigmas[step] | |
print("step, audio_source_noised.min, audio_source_noised.max = ", step, audio_source_noised.min(), audio_source_noised.max()) | |
sigma_dt = torch.sqrt(sigmas[step] ** 2 - sigmas[step + 1] ** 2) | |
for re in range(resamples): | |
#x_t = audio_source_noised * mask + x_t * ~mask | |
x_t = audio_source_noised * mask + x_t * (1.0-mask) | |
# from ImageTransformerDenoiserModelV2: | |
# def forward(self, x, sigma, aug_cond=None, class_cond=None, mapping_cond=None): | |
#v_t = model_fn(x_t, ts[step].expand(batch_size), **model_args) | |
print("step, re, x_t.min, x_t.max , sigmas[step]= ", step, re, x_t.min(), x_t.max(), sigmas[step]) | |
v_t = model_fn(x_t, sigmas[step].expand(batch_size), aug_cond=None, class_cond=None, mapping_cond=None) | |
print("step, re, v_t.min, v_t.max = ", step, re, v_t.min(), v_t.max()) | |
if v_t.isnan().any(): | |
print("v_t has NaNs.") | |
sys.exit(0) | |
eps_t = x_t * sigmas[step] + v_t * alphas[step] | |
pred_t = x_t * alphas[step] - v_t * sigmas[step] | |
if callback is not None: | |
callback({'steps': steps, 'step': step, 'x': x_t, 't': ts[step], 'pred': pred_t, 'eps': eps_t, 'res': re}) | |
if(re < resamples - 1): | |
x_t = pred_t * alphas[step] + eps_t * sigmas[step + 1] + sigma_dt * torch.randn_like(x_t) | |
else: | |
x_t = pred_t * alphas[step + 1] + eps_t * sigmas[step + 1] | |
print("step, re, v_t.min, v_t.max, x_t.min, x_t.max = ", step, re, v_t.min(), v_t.max(), x_t.min(), x_t.max()) | |
#sys.exit(0) | |
return (audio_source * mask + x_t * (1.0-mask)) | |
def alpha_sigma_to_t(alpha, sigma): | |
"""Returns a timestep, given the scaling factors for the clean image and for | |
the noise.""" | |
return torch.atan2(sigma, alpha) / math.pi * 2 | |
def log_snr_to_alpha_sigma(log_snr): | |
"""Returns the scaling factors for the clean image and for the noise, given | |
the log SNR for a timestep.""" | |
return log_snr.sigmoid().sqrt(), log_snr.neg().sigmoid().sqrt() | |
def get_ddpm_schedule(ddpm_t): | |
"""Returns timesteps for the noise schedule from the DDPM paper.""" | |
log_snr = -torch.special.expm1(1e-4 + 10 * ddpm_t**2).log() | |
alpha, sigma = log_snr_to_alpha_sigma(log_snr) | |
return alpha_sigma_to_t(alpha, sigma) | |
#class LogSchedule(SchedulerBase): | |
class LogSchedule(): | |
def __init__(self, device:torch.device = None): | |
super().__init__(device) | |
def create(self, steps: int, first: float = 1, last: float = 0, device: torch.device = None, scheduler_args = {'min_log_snr': -10, 'max_log_snr': 10}) -> torch.Tensor: | |
ramp = torch.linspace(first, last, steps, device = device if (device != None) else self.device) | |
min_log_snr = scheduler_args.get('min_log_snr') | |
max_log_snr = scheduler_args.get('max_log_snr') | |
return self.get_log_schedule( | |
ramp, | |
min_log_snr if min_log_snr!=None else -10, | |
max_log_snr if max_log_snr!=None else 10, | |
) | |
def get_log_schedule(self, t, min_log_snr=-10, max_log_snr=10): | |
log_snr = t * (min_log_snr - max_log_snr) + max_log_snr | |
alpha = log_snr.sigmoid().sqrt() | |
sigma = log_snr.neg().sigmoid().sqrt() | |
return torch.atan2(sigma, alpha) / math.pi * 2 # this returns a timestep? | |
#class CrashSchedule(SchedulerBase): | |
class CrashSchedule(): | |
def __init__(self, device:torch.device = None): | |
super().__init__(device) | |
def create(self, steps: int, first: float = 1, last: float = 0, device: torch.device = None, scheduler_args = None) -> torch.Tensor: | |
ramp = torch.linspace(first, last, steps, device = device if (device != None) else self.device) | |
sigma = torch.sin(ramp * math.pi / 2) ** 2 | |
alpha = (1 - sigma**2) ** 0.5 | |
return torch.atan2(sigma, alpha) / math.pi * 2 # this returns a timestep? |