PicturesOfMIDI / pom /v_diffusion.py
drscotthawley's picture
adding needed files
0dc3eb6
raw
history blame
7.49 kB
# v-diffusion codes for DDPM inpainting. May not be compatible with k-diffusion.
# @SuspectT's inpainting codes, Feb 25 2024
# shared w/ me over Discord:
# "that's the v-diffusion inpainting with ddpm
# optimal settings were around 100 steps for the scheduler
# (ts refering to timesteps here) and resamples was 4"
import torch
from torch import nn
from typing import Callable
from tqdm import trange
import math
import sys
# from kcrowson/v-diffusion-pytorch
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
#class DDPM(SamplerBase):
class DDPM():
def __init__(self, model_fn: Callable = None):
super().__init__()
def _step(
self, model_fn: Callable, x_t: torch.Tensor, step: int,
t_now: torch.Tensor, t_next: torch.Tensor,
callback: Callable, model_args, **sampler_args ) -> torch.Tensor:
alpha_now, sigma_now = t_to_alpha_sigma(t_now) # Get alpha / sigma for current timestep.
alpha_next, sigma_next = t_to_alpha_sigma(t_next) # Get alpha / sigma for next timestep.
v_t = model_fn(x_t, t_now.expand(x_t.shape[0]), **model_args) # Expand t to match batch_size which corresponds to x_t.shape[0]
eps_t = x_t * sigma_now + v_t * alpha_now
pred_t = x_t * alpha_now - v_t * sigma_now
if callback is not None:
callback({'step': step, 'x': x_t, 't': t_now, 'pred': pred_t, 'eps': eps_t})
return (pred_t * alpha_next + eps_t * sigma_next)
def _sample( self, model_fn: Callable, x_t: torch.Tensor, ts: torch.Tensor,
callback: Callable, model_args, **sampler_args ) -> torch.Tensor:
print("Using DDPM Sampler.")
steps = ts.size(0)
use_tqdm = sampler_args.get('use_tqdm')
use_range = trange if (use_tqdm if (use_tqdm != None) else False) else range
for step in use_range(steps - 1):
x_t = self._step( model_fn, x_t, step, ts[step], ts[step + 1],
lambda kwargs: callback(**dict(kwargs, steps=steps)) if(callback != None) else None,
model_args )
return x_t
def _inpaint(self,
model_fn: Callable, audio_source: torch.Tensor, mask: torch.Tensor,
ts: torch.Tensor, resamples: int, callback: Callable, model_args, **sampler_args
) -> torch.Tensor:
steps = ts.size(0)
batch_size = audio_source.size(0)
alphas, sigmas = t_to_alpha_sigma(ts)
# SHH: rescale audio_source to zero mean and unit variance
audio_source = (audio_source - audio_source.mean()) / audio_source.std()
x_t = audio_source
use_tqdm = sampler_args.get('use_tqdm')
use_range = trange if (use_tqdm if (use_tqdm != None) else False) else range
for step in use_range(steps - 1):
print("step, audio_source.min, audio_source.max, alphas[step], sigmas[step] = ", step, audio_source.min(), audio_source.max(), alphas[step], sigmas[step])
audio_source_noised = audio_source * alphas[step] + torch.randn_like(audio_source) * sigmas[step]
print("step, audio_source_noised.min, audio_source_noised.max = ", step, audio_source_noised.min(), audio_source_noised.max())
sigma_dt = torch.sqrt(sigmas[step] ** 2 - sigmas[step + 1] ** 2)
for re in range(resamples):
#x_t = audio_source_noised * mask + x_t * ~mask
x_t = audio_source_noised * mask + x_t * (1.0-mask)
# from ImageTransformerDenoiserModelV2:
# def forward(self, x, sigma, aug_cond=None, class_cond=None, mapping_cond=None):
#v_t = model_fn(x_t, ts[step].expand(batch_size), **model_args)
print("step, re, x_t.min, x_t.max , sigmas[step]= ", step, re, x_t.min(), x_t.max(), sigmas[step])
v_t = model_fn(x_t, sigmas[step].expand(batch_size), aug_cond=None, class_cond=None, mapping_cond=None)
print("step, re, v_t.min, v_t.max = ", step, re, v_t.min(), v_t.max())
if v_t.isnan().any():
print("v_t has NaNs.")
sys.exit(0)
eps_t = x_t * sigmas[step] + v_t * alphas[step]
pred_t = x_t * alphas[step] - v_t * sigmas[step]
if callback is not None:
callback({'steps': steps, 'step': step, 'x': x_t, 't': ts[step], 'pred': pred_t, 'eps': eps_t, 'res': re})
if(re < resamples - 1):
x_t = pred_t * alphas[step] + eps_t * sigmas[step + 1] + sigma_dt * torch.randn_like(x_t)
else:
x_t = pred_t * alphas[step + 1] + eps_t * sigmas[step + 1]
print("step, re, v_t.min, v_t.max, x_t.min, x_t.max = ", step, re, v_t.min(), v_t.max(), x_t.min(), x_t.max())
#sys.exit(0)
return (audio_source * mask + x_t * (1.0-mask))
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def log_snr_to_alpha_sigma(log_snr):
"""Returns the scaling factors for the clean image and for the noise, given
the log SNR for a timestep."""
return log_snr.sigmoid().sqrt(), log_snr.neg().sigmoid().sqrt()
def get_ddpm_schedule(ddpm_t):
"""Returns timesteps for the noise schedule from the DDPM paper."""
log_snr = -torch.special.expm1(1e-4 + 10 * ddpm_t**2).log()
alpha, sigma = log_snr_to_alpha_sigma(log_snr)
return alpha_sigma_to_t(alpha, sigma)
#class LogSchedule(SchedulerBase):
class LogSchedule():
def __init__(self, device:torch.device = None):
super().__init__(device)
def create(self, steps: int, first: float = 1, last: float = 0, device: torch.device = None, scheduler_args = {'min_log_snr': -10, 'max_log_snr': 10}) -> torch.Tensor:
ramp = torch.linspace(first, last, steps, device = device if (device != None) else self.device)
min_log_snr = scheduler_args.get('min_log_snr')
max_log_snr = scheduler_args.get('max_log_snr')
return self.get_log_schedule(
ramp,
min_log_snr if min_log_snr!=None else -10,
max_log_snr if max_log_snr!=None else 10,
)
def get_log_schedule(self, t, min_log_snr=-10, max_log_snr=10):
log_snr = t * (min_log_snr - max_log_snr) + max_log_snr
alpha = log_snr.sigmoid().sqrt()
sigma = log_snr.neg().sigmoid().sqrt()
return torch.atan2(sigma, alpha) / math.pi * 2 # this returns a timestep?
#class CrashSchedule(SchedulerBase):
class CrashSchedule():
def __init__(self, device:torch.device = None):
super().__init__(device)
def create(self, steps: int, first: float = 1, last: float = 0, device: torch.device = None, scheduler_args = None) -> torch.Tensor:
ramp = torch.linspace(first, last, steps, device = device if (device != None) else self.device)
sigma = torch.sin(ramp * math.pi / 2) ** 2
alpha = (1 - sigma**2) ** 0.5
return torch.atan2(sigma, alpha) / math.pi * 2 # this returns a timestep?