Upload 11 files
Browse files- Dockerfile +10 -0
- app.py +272 -0
- moa/__init__.py +0 -0
- moa/agent/__init__.py +1 -0
- moa/agent/moa.py +181 -0
- moa/agent/prompts.py +15 -0
- moa/main.py +20 -0
- requirements.txt +6 -0
- static/banner.png +0 -0
- static/favicon.ico +0 -0
- static/moa_groq.svg +0 -0
Dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt ./
|
6 |
+
COPY . /app/
|
7 |
+
|
8 |
+
RUN pip install -r requirements.txt
|
9 |
+
|
10 |
+
CMD ["streamlit", "run", "app.py", "--server.port", "8080"]
|
app.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
from typing import Iterable
|
4 |
+
from moa.agent import MOAgent
|
5 |
+
from moa.agent.moa import ResponseChunk
|
6 |
+
from streamlit_ace import st_ace
|
7 |
+
import copy
|
8 |
+
|
9 |
+
# Default configuration
|
10 |
+
default_config = {
|
11 |
+
"main_model": "llama3-70b-8192",
|
12 |
+
"cycles": 3,
|
13 |
+
"layer_agent_config": {}
|
14 |
+
}
|
15 |
+
|
16 |
+
layer_agent_config_def = {
|
17 |
+
"layer_agent_1": {
|
18 |
+
"system_prompt": "Think through your response step by step. {helper_response}",
|
19 |
+
"model_name": "llama3-8b-8192"
|
20 |
+
},
|
21 |
+
"layer_agent_2": {
|
22 |
+
"system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
|
23 |
+
"model_name": "gemma-7b-it",
|
24 |
+
"temperature": 0.7
|
25 |
+
},
|
26 |
+
"layer_agent_3": {
|
27 |
+
"system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
|
28 |
+
"model_name": "llama3-8b-8192"
|
29 |
+
},
|
30 |
+
|
31 |
+
}
|
32 |
+
|
33 |
+
# Recommended Configuration
|
34 |
+
|
35 |
+
rec_config = {
|
36 |
+
"main_model": "llama3-70b-8192",
|
37 |
+
"cycles": 2,
|
38 |
+
"layer_agent_config": {}
|
39 |
+
}
|
40 |
+
|
41 |
+
layer_agent_config_rec = {
|
42 |
+
"layer_agent_1": {
|
43 |
+
"system_prompt": "Think through your response step by step. {helper_response}",
|
44 |
+
"model_name": "llama3-8b-8192",
|
45 |
+
"temperature": 0.1
|
46 |
+
},
|
47 |
+
"layer_agent_2": {
|
48 |
+
"system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
|
49 |
+
"model_name": "llama3-8b-8192",
|
50 |
+
"temperature": 0.2
|
51 |
+
},
|
52 |
+
"layer_agent_3": {
|
53 |
+
"system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
|
54 |
+
"model_name": "llama3-8b-8192",
|
55 |
+
"temperature": 0.4
|
56 |
+
},
|
57 |
+
"layer_agent_4": {
|
58 |
+
"system_prompt": "You are an expert planner agent. Create a plan for how to answer the human's query. {helper_response}",
|
59 |
+
"model_name": "mixtral-8x7b-32768",
|
60 |
+
"temperature": 0.5
|
61 |
+
},
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
def stream_response(messages: Iterable[ResponseChunk]):
|
66 |
+
layer_outputs = {}
|
67 |
+
for message in messages:
|
68 |
+
if message['response_type'] == 'intermediate':
|
69 |
+
layer = message['metadata']['layer']
|
70 |
+
if layer not in layer_outputs:
|
71 |
+
layer_outputs[layer] = []
|
72 |
+
layer_outputs[layer].append(message['delta'])
|
73 |
+
else:
|
74 |
+
# Display accumulated layer outputs
|
75 |
+
for layer, outputs in layer_outputs.items():
|
76 |
+
st.write(f"Layer {layer}")
|
77 |
+
cols = st.columns(len(outputs))
|
78 |
+
for i, output in enumerate(outputs):
|
79 |
+
with cols[i]:
|
80 |
+
st.expander(label=f"Agent {i+1}", expanded=False).write(output)
|
81 |
+
|
82 |
+
# Clear layer outputs for the next iteration
|
83 |
+
layer_outputs = {}
|
84 |
+
|
85 |
+
# Yield the main agent's output
|
86 |
+
yield message['delta']
|
87 |
+
|
88 |
+
def set_moa_agent(
|
89 |
+
main_model: str = default_config['main_model'],
|
90 |
+
cycles: int = default_config['cycles'],
|
91 |
+
layer_agent_config: dict[dict[str, any]] = copy.deepcopy(layer_agent_config_def),
|
92 |
+
main_model_temperature: float = 0.1,
|
93 |
+
override: bool = False
|
94 |
+
):
|
95 |
+
if override or ("main_model" not in st.session_state):
|
96 |
+
st.session_state.main_model = main_model
|
97 |
+
else:
|
98 |
+
if "main_model" not in st.session_state: st.session_state.main_model = main_model
|
99 |
+
|
100 |
+
if override or ("cycles" not in st.session_state):
|
101 |
+
st.session_state.cycles = cycles
|
102 |
+
else:
|
103 |
+
if "cycles" not in st.session_state: st.session_state.cycles = cycles
|
104 |
+
|
105 |
+
if override or ("layer_agent_config" not in st.session_state):
|
106 |
+
st.session_state.layer_agent_config = layer_agent_config
|
107 |
+
else:
|
108 |
+
if "layer_agent_config" not in st.session_state: st.session_state.layer_agent_config = layer_agent_config
|
109 |
+
|
110 |
+
if override or ("main_temp" not in st.session_state):
|
111 |
+
st.session_state.main_temp = main_model_temperature
|
112 |
+
else:
|
113 |
+
if "main_temp" not in st.session_state: st.session_state.main_temp = main_model_temperature
|
114 |
+
|
115 |
+
cls_ly_conf = copy.deepcopy(st.session_state.layer_agent_config)
|
116 |
+
|
117 |
+
if override or ("moa_agent" not in st.session_state):
|
118 |
+
st.session_state.moa_agent = MOAgent.from_config(
|
119 |
+
main_model=st.session_state.main_model,
|
120 |
+
cycles=st.session_state.cycles,
|
121 |
+
layer_agent_config=cls_ly_conf,
|
122 |
+
temperature=st.session_state.main_temp
|
123 |
+
)
|
124 |
+
|
125 |
+
del cls_ly_conf
|
126 |
+
del layer_agent_config
|
127 |
+
|
128 |
+
st.set_page_config(
|
129 |
+
page_title="Mixture-Of-Agents Powered by Groq",
|
130 |
+
page_icon='static/favicon.ico',
|
131 |
+
menu_items={
|
132 |
+
'About': "## Groq Mixture-Of-Agents \n Powered by [Groq](https://groq.com)"
|
133 |
+
},
|
134 |
+
layout="wide"
|
135 |
+
)
|
136 |
+
valid_model_names = [
|
137 |
+
'llama3-70b-8192',
|
138 |
+
'llama3-8b-8192',
|
139 |
+
'gemma-7b-it',
|
140 |
+
'gemma2-9b-it',
|
141 |
+
'mixtral-8x7b-32768'
|
142 |
+
]
|
143 |
+
|
144 |
+
st.markdown("<a href='https://groq.com'><img src='app/static/banner.png' width='500'></a>", unsafe_allow_html=True)
|
145 |
+
st.write("---")
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
# Initialize session state
|
150 |
+
if "messages" not in st.session_state:
|
151 |
+
st.session_state.messages = []
|
152 |
+
|
153 |
+
set_moa_agent()
|
154 |
+
|
155 |
+
# Sidebar for configuration
|
156 |
+
with st.sidebar:
|
157 |
+
# config_form = st.form("Agent Configuration", border=False)
|
158 |
+
st.title("MOA Configuration")
|
159 |
+
with st.form("Agent Configuration", border=False):
|
160 |
+
if st.form_submit_button("Use Recommended Config"):
|
161 |
+
try:
|
162 |
+
set_moa_agent(
|
163 |
+
main_model=rec_config['main_model'],
|
164 |
+
cycles=rec_config['cycles'],
|
165 |
+
layer_agent_config=layer_agent_config_rec,
|
166 |
+
override=True
|
167 |
+
)
|
168 |
+
st.session_state.messages = []
|
169 |
+
st.success("Configuration updated successfully!")
|
170 |
+
except json.JSONDecodeError:
|
171 |
+
st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
|
172 |
+
except Exception as e:
|
173 |
+
st.error(f"Error updating configuration: {str(e)}")
|
174 |
+
# Main model selection
|
175 |
+
new_main_model = st.selectbox(
|
176 |
+
"Select Main Model",
|
177 |
+
options=valid_model_names,
|
178 |
+
index=valid_model_names.index(st.session_state.main_model)
|
179 |
+
)
|
180 |
+
|
181 |
+
# Cycles input
|
182 |
+
new_cycles = st.number_input(
|
183 |
+
"Number of Layers",
|
184 |
+
min_value=1,
|
185 |
+
max_value=10,
|
186 |
+
value=st.session_state.cycles
|
187 |
+
)
|
188 |
+
|
189 |
+
# Main Model Temperature
|
190 |
+
main_temperature = st.number_input(
|
191 |
+
label="Main Model Temperature",
|
192 |
+
value=0.1,
|
193 |
+
min_value=0.0,
|
194 |
+
max_value=1.0,
|
195 |
+
step=0.1
|
196 |
+
)
|
197 |
+
|
198 |
+
# Layer agent configuration
|
199 |
+
tooltip = "Agents in the layer agent configuration run in parallel _per cycle_. Each layer agent supports all initialization parameters of [Langchain's ChatGroq](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html) class as valid dictionary fields."
|
200 |
+
st.markdown("Layer Agent Config", help=tooltip)
|
201 |
+
new_layer_agent_config = st_ace(
|
202 |
+
value=json.dumps(st.session_state.layer_agent_config, indent=2),
|
203 |
+
language='json',
|
204 |
+
placeholder="Layer Agent Configuration (JSON)",
|
205 |
+
show_gutter=False,
|
206 |
+
wrap=True,
|
207 |
+
auto_update=True
|
208 |
+
)
|
209 |
+
|
210 |
+
if st.form_submit_button("Update Configuration"):
|
211 |
+
try:
|
212 |
+
new_layer_config = json.loads(new_layer_agent_config)
|
213 |
+
set_moa_agent(
|
214 |
+
main_model=new_main_model,
|
215 |
+
cycles=new_cycles,
|
216 |
+
layer_agent_config=new_layer_config,
|
217 |
+
main_model_temperature=main_temperature,
|
218 |
+
override=True
|
219 |
+
)
|
220 |
+
st.session_state.messages = []
|
221 |
+
st.success("Configuration updated successfully!")
|
222 |
+
except json.JSONDecodeError:
|
223 |
+
st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
|
224 |
+
except Exception as e:
|
225 |
+
st.error(f"Error updating configuration: {str(e)}")
|
226 |
+
|
227 |
+
st.markdown("---")
|
228 |
+
st.markdown("""
|
229 |
+
### Credits
|
230 |
+
- MOA: [Together AI](https://www.together.ai/blog/together-moa)
|
231 |
+
- LLMs: [Groq](https://groq.com/)
|
232 |
+
- Paper: [arXiv:2406.04692](https://arxiv.org/abs/2406.04692)
|
233 |
+
""")
|
234 |
+
|
235 |
+
# Main app layout
|
236 |
+
st.header("Mixture of Agents", anchor=False)
|
237 |
+
st.write("A demo of the Mixture of Agents architecture proposed by Together AI, Powered by Groq LLMs.")
|
238 |
+
st.image("./static/moa_groq.svg", caption="Mixture of Agents Workflow", width=1000)
|
239 |
+
|
240 |
+
# Display current configuration
|
241 |
+
with st.expander("Current MOA Configuration", expanded=False):
|
242 |
+
st.markdown(f"**Main Model**: ``{st.session_state.main_model}``")
|
243 |
+
st.markdown(f"**Main Model Temperature**: ``{st.session_state.main_temp:.1f}``")
|
244 |
+
st.markdown(f"**Layers**: ``{st.session_state.cycles}``")
|
245 |
+
st.markdown(f"**Layer Agents Config**:")
|
246 |
+
new_layer_agent_config = st_ace(
|
247 |
+
value=json.dumps(st.session_state.layer_agent_config, indent=2),
|
248 |
+
language='json',
|
249 |
+
placeholder="Layer Agent Configuration (JSON)",
|
250 |
+
show_gutter=False,
|
251 |
+
wrap=True,
|
252 |
+
readonly=True,
|
253 |
+
auto_update=True
|
254 |
+
)
|
255 |
+
|
256 |
+
# Chat interface
|
257 |
+
for message in st.session_state.messages:
|
258 |
+
with st.chat_message(message["role"]):
|
259 |
+
st.markdown(message["content"])
|
260 |
+
|
261 |
+
if query := st.chat_input("Ask a question"):
|
262 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
263 |
+
with st.chat_message("user"):
|
264 |
+
st.write(query)
|
265 |
+
|
266 |
+
moa_agent: MOAgent = st.session_state.moa_agent
|
267 |
+
with st.chat_message("assistant"):
|
268 |
+
message_placeholder = st.empty()
|
269 |
+
ast_mess = stream_response(moa_agent.chat(query, output_format='json'))
|
270 |
+
response = st.write_stream(ast_mess)
|
271 |
+
|
272 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
moa/__init__.py
ADDED
File without changes
|
moa/agent/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .moa import MOAgent
|
moa/agent/moa.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Langchain agent
|
3 |
+
"""
|
4 |
+
from typing import Generator, Dict, Optional, Literal, TypedDict, List
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
10 |
+
from langchain_core.messages import BaseMessage
|
11 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableSerializable
|
12 |
+
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
|
14 |
+
from .prompts import SYSTEM_PROMPT, REFERENCE_SYSTEM_PROMPT
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
valid_model_names = Literal[
|
18 |
+
'llama3-70b-8192',
|
19 |
+
'llama3-8b-8192',
|
20 |
+
'gemma-7b-it',
|
21 |
+
'gemma2-9b-it',
|
22 |
+
'mixtral-8x7b-32768'
|
23 |
+
]
|
24 |
+
|
25 |
+
class ResponseChunk(TypedDict):
|
26 |
+
delta: str
|
27 |
+
response_type: Literal['intermediate', 'output']
|
28 |
+
metadata: Dict = {}
|
29 |
+
|
30 |
+
|
31 |
+
class MOAgent:
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
main_agent: RunnableSerializable[Dict, str],
|
35 |
+
layer_agent: RunnableSerializable[Dict, Dict],
|
36 |
+
reference_system_prompt: Optional[str] = None,
|
37 |
+
cycles: Optional[int] = None,
|
38 |
+
chat_memory: Optional[ConversationBufferMemory] = None
|
39 |
+
) -> None:
|
40 |
+
self.reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
|
41 |
+
self.main_agent = main_agent
|
42 |
+
self.layer_agent = layer_agent
|
43 |
+
self.cycles = cycles or 1
|
44 |
+
self.chat_memory = chat_memory or ConversationBufferMemory(
|
45 |
+
memory_key="messages",
|
46 |
+
return_messages=True
|
47 |
+
)
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def concat_response(
|
51 |
+
inputs: Dict[str, str],
|
52 |
+
reference_system_prompt: Optional[str] = None
|
53 |
+
):
|
54 |
+
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
|
55 |
+
|
56 |
+
responses = ""
|
57 |
+
res_list = []
|
58 |
+
for i, out in enumerate(inputs.values()):
|
59 |
+
responses += f"{i}. {out}\n"
|
60 |
+
res_list.append(out)
|
61 |
+
|
62 |
+
formatted_prompt = reference_system_prompt.format(responses=responses)
|
63 |
+
return {
|
64 |
+
'formatted_response': formatted_prompt,
|
65 |
+
'responses': res_list
|
66 |
+
}
|
67 |
+
|
68 |
+
@classmethod
|
69 |
+
def from_config(
|
70 |
+
cls,
|
71 |
+
main_model: Optional[valid_model_names] = 'llama3-70b-8192',
|
72 |
+
system_prompt: Optional[str] = None,
|
73 |
+
cycles: int = 1,
|
74 |
+
layer_agent_config: Optional[Dict] = None,
|
75 |
+
reference_system_prompt: Optional[str] = None,
|
76 |
+
**main_model_kwargs
|
77 |
+
):
|
78 |
+
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
|
79 |
+
system_prompt = system_prompt or SYSTEM_PROMPT
|
80 |
+
layer_agent = MOAgent._configure_layer_agent(layer_agent_config)
|
81 |
+
main_agent = MOAgent._create_agent_from_system_prompt(
|
82 |
+
system_prompt=system_prompt,
|
83 |
+
model_name=main_model,
|
84 |
+
**main_model_kwargs
|
85 |
+
)
|
86 |
+
return cls(
|
87 |
+
main_agent=main_agent,
|
88 |
+
layer_agent=layer_agent,
|
89 |
+
reference_system_prompt=reference_system_prompt,
|
90 |
+
cycles=cycles
|
91 |
+
)
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def _configure_layer_agent(
|
95 |
+
layer_agent_config: Optional[Dict] = None
|
96 |
+
) -> RunnableSerializable[Dict, Dict]:
|
97 |
+
if not layer_agent_config:
|
98 |
+
layer_agent_config = {
|
99 |
+
'layer_agent_1' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'llama3-8b-8192'},
|
100 |
+
'layer_agent_2' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'gemma-7b-it'},
|
101 |
+
'layer_agent_3' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'mixtral-8x7b-32768'}
|
102 |
+
}
|
103 |
+
|
104 |
+
parallel_chain_map = dict()
|
105 |
+
for key, value in layer_agent_config.items():
|
106 |
+
chain = MOAgent._create_agent_from_system_prompt(
|
107 |
+
system_prompt=value.pop("system_prompt", SYSTEM_PROMPT),
|
108 |
+
model_name=value.pop("model_name", 'llama3-8b-8192'),
|
109 |
+
**value
|
110 |
+
)
|
111 |
+
parallel_chain_map[key] = RunnablePassthrough() | chain
|
112 |
+
|
113 |
+
chain = parallel_chain_map | RunnableLambda(MOAgent.concat_response)
|
114 |
+
return chain
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def _create_agent_from_system_prompt(
|
118 |
+
system_prompt: str = SYSTEM_PROMPT,
|
119 |
+
model_name: str = "llama3-8b-8192",
|
120 |
+
**llm_kwargs
|
121 |
+
) -> RunnableSerializable[Dict, str]:
|
122 |
+
prompt = ChatPromptTemplate.from_messages([
|
123 |
+
("system", system_prompt),
|
124 |
+
MessagesPlaceholder(variable_name="messages", optional=True),
|
125 |
+
("human", "{input}")
|
126 |
+
])
|
127 |
+
|
128 |
+
assert 'helper_response' in prompt.input_variables
|
129 |
+
llm = ChatGroq(model=model_name, **llm_kwargs)
|
130 |
+
|
131 |
+
chain = prompt | llm | StrOutputParser()
|
132 |
+
return chain
|
133 |
+
|
134 |
+
def chat(
|
135 |
+
self,
|
136 |
+
input: str,
|
137 |
+
messages: Optional[List[BaseMessage]] = None,
|
138 |
+
cycles: Optional[int] = None,
|
139 |
+
save: bool = True,
|
140 |
+
output_format: Literal['string', 'json'] = 'string'
|
141 |
+
) -> Generator[str | ResponseChunk, None, None]:
|
142 |
+
cycles = cycles or self.cycles
|
143 |
+
llm_inp = {
|
144 |
+
'input': input,
|
145 |
+
'messages': messages or self.chat_memory.load_memory_variables({})['messages'],
|
146 |
+
'helper_response': ""
|
147 |
+
}
|
148 |
+
for cyc in range(cycles):
|
149 |
+
layer_output = self.layer_agent.invoke(llm_inp)
|
150 |
+
l_frm_resp = layer_output['formatted_response']
|
151 |
+
l_resps = layer_output['responses']
|
152 |
+
|
153 |
+
llm_inp = {
|
154 |
+
'input': input,
|
155 |
+
'messages': self.chat_memory.load_memory_variables({})['messages'],
|
156 |
+
'helper_response': l_frm_resp
|
157 |
+
}
|
158 |
+
|
159 |
+
if output_format == 'json':
|
160 |
+
for l_out in l_resps:
|
161 |
+
yield ResponseChunk(
|
162 |
+
delta=l_out,
|
163 |
+
response_type='intermediate',
|
164 |
+
metadata={'layer': cyc + 1}
|
165 |
+
)
|
166 |
+
|
167 |
+
stream = self.main_agent.stream(llm_inp)
|
168 |
+
response = ""
|
169 |
+
for chunk in stream:
|
170 |
+
if output_format == 'json':
|
171 |
+
yield ResponseChunk(
|
172 |
+
delta=chunk,
|
173 |
+
response_type='output',
|
174 |
+
metadata={}
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
yield chunk
|
178 |
+
response += chunk
|
179 |
+
|
180 |
+
if save:
|
181 |
+
self.chat_memory.save_context({'input': input}, {'output': response})
|
moa/agent/prompts.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM_PROMPT = """\
|
2 |
+
You are a personal assistant that is helpful.
|
3 |
+
|
4 |
+
{helper_response}\
|
5 |
+
"""
|
6 |
+
|
7 |
+
REFERENCE_SYSTEM_PROMPT = """\
|
8 |
+
You have been provided with a set of responses from various open-source models to the latest user query.
|
9 |
+
Your task is to synthesize these responses into a single, high-quality response.
|
10 |
+
It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect.
|
11 |
+
Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction.
|
12 |
+
Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
|
13 |
+
Responses from models:
|
14 |
+
{responses}
|
15 |
+
"""
|
moa/main.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from agent import MOAgent
|
2 |
+
|
3 |
+
# Configure agent
|
4 |
+
layer_agent_config = {
|
5 |
+
'layer_agent_1' : {'system_prompt': "Think through your response with step by step {helper_response}", 'model_name': 'llama3-8b-8192'},
|
6 |
+
'layer_agent_2' : {'system_prompt': "Respond with a thought and then your response to the question {helper_response}", 'model_name': 'gemma-7b-it'},
|
7 |
+
'layer_agent_3' : {'model_name': 'llama3-8b-8192'},
|
8 |
+
'layer_agent_4' : {'model_name': 'gemma-7b-it'},
|
9 |
+
'layer_agent_5' : {'model_name': 'llama3-8b-8192'},
|
10 |
+
}
|
11 |
+
agent = MOAgent.from_config(
|
12 |
+
main_model='mixtral-8x7b-32768',
|
13 |
+
layer_agent_config=layer_agent_config
|
14 |
+
)
|
15 |
+
|
16 |
+
while True:
|
17 |
+
inp = input("\nAsk a question: ")
|
18 |
+
stream = agent.chat(inp, output_format='json')
|
19 |
+
for chunk in stream:
|
20 |
+
print(chunk)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain>=0.2.5
|
2 |
+
langchain_groq>=0.1.5
|
3 |
+
streamlit>=1.36.0
|
4 |
+
watchdog>=4.0.1
|
5 |
+
python-dotenv>=1.0.1
|
6 |
+
streamlit-ace>=0.1.1
|
static/banner.png
ADDED
static/favicon.ico
ADDED
static/moa_groq.svg
ADDED