Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +312 -116
src/streamlit_app.py
CHANGED
|
@@ -1,131 +1,327 @@
|
|
| 1 |
-
|
| 2 |
import streamlit as st
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
import joblib
|
| 5 |
import pandas as pd
|
| 6 |
-
import json
|
| 7 |
import numpy as np
|
| 8 |
-
import pandas as pd
|
| 9 |
import joblib
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
return mats if mats else DEFAULT_MATERIALS
|
| 18 |
-
except FileNotFoundError:
|
| 19 |
-
return DEFAULT_MATERIALS
|
| 20 |
-
|
| 21 |
-
def build_baseline_from_form(row_dict):
|
| 22 |
-
# Convert to single-row DataFrame
|
| 23 |
-
df = pd.DataFrame([row_dict])
|
| 24 |
-
# Ensure presence of all baseline columns model might expect.
|
| 25 |
-
# (The pipeline has imputation & one-hot; we just pass what's available.)
|
| 26 |
-
# Guarantee numeric types for core measures
|
| 27 |
-
for c in ["age","pain_m0","mmo_m0","ohip_14_m0"]:
|
| 28 |
-
if c in df.columns:
|
| 29 |
-
df[c] = pd.to_numeric(df[c], errors="coerce")
|
| 30 |
-
# previous_injection as 0/1
|
| 31 |
-
if "previous_injection" in df.columns:
|
| 32 |
-
df["previous_injection"] = pd.to_numeric(df["previous_injection"], errors="coerce")
|
| 33 |
-
# include placeholder for time2_days if training had it
|
| 34 |
-
if "time2_days" not in df.columns:
|
| 35 |
-
df["time2_days"] = np.nan
|
| 36 |
-
# Fill optional text columns if missing
|
| 37 |
-
for tcol in ["location","muscle_injected","adjunctive_tretment","material_in_previous_injection"]:
|
| 38 |
-
if tcol not in df.columns:
|
| 39 |
-
df[tcol] = ""
|
| 40 |
-
return df
|
| 41 |
-
|
| 42 |
-
def score_material(model, row_dict, material):
|
| 43 |
-
base = build_baseline_from_form(row_dict)
|
| 44 |
-
base["material_injected"] = material
|
| 45 |
-
proba = float(model.predict_proba(base)[0,1])
|
| 46 |
-
return proba
|
| 47 |
-
|
| 48 |
-
def rank_materials(model, row_dict, materials):
|
| 49 |
-
rows = []
|
| 50 |
-
for m in materials:
|
| 51 |
-
p = score_material(model, row_dict, m)
|
| 52 |
-
rows.append((m, p))
|
| 53 |
-
rows.sort(key=lambda x: x[1], reverse=True)
|
| 54 |
-
return rows
|
| 55 |
-
|
| 56 |
-
st.set_page_config(page_title="TMJ Success Predictor (Material-specific)", page_icon="๐ฆท", layout="wide")
|
| 57 |
-
st.title("๐ฆท TMJ Success Predictor โ Material-specific")
|
| 58 |
-
st.caption("Predicts 3-month success probability **conditioned on the selected injection material**. Also compares across all materials.")
|
| 59 |
-
|
| 60 |
-
MODEL_PATH = "src/best_tmj_success_classifier.pkl"
|
| 61 |
-
MATS_PATH = "src/material_list.json"
|
| 62 |
|
|
|
|
| 63 |
@st.cache_resource
|
| 64 |
def load_artifacts():
|
| 65 |
-
model
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
c4,c5 = st.columns(2)
|
| 90 |
-
with c4:
|
| 91 |
-
location = st.text_input("Location", value="TMJ Right")
|
| 92 |
-
muscle_injected = st.text_input("Muscle injected", value="masseter")
|
| 93 |
-
adjunctive_treatment = st.text_input("Adjunctive treatment", value="physiotherapy")
|
| 94 |
-
with c5:
|
| 95 |
-
material_prev = st.text_input("Material in previous injection", value="")
|
| 96 |
-
# free text fields are optional; model pipeline is robust
|
| 97 |
-
material_choice = st.selectbox("Material injected (to score)", materials)
|
| 98 |
-
do_compare = st.checkbox("Compare all materials", value=True)
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
| 102 |
if submitted:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import joblib
|
| 5 |
+
import json
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
from datetime import datetime
|
| 9 |
|
| 10 |
+
# Page config
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="TMJ Injection Success Predictor",
|
| 13 |
+
page_icon="๐",
|
| 14 |
+
layout="wide"
|
| 15 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Load model and materials
|
| 18 |
@st.cache_resource
|
| 19 |
def load_artifacts():
|
| 20 |
+
"""Load the trained model and materials list"""
|
| 21 |
+
try:
|
| 22 |
+
# Load model
|
| 23 |
+
model = joblib.load('src/best_tmj_success_classifier_without_fe.pkl')
|
| 24 |
+
|
| 25 |
+
# Load materials list
|
| 26 |
+
try:
|
| 27 |
+
with open('src/material_list.json', 'r') as f:
|
| 28 |
+
materials_data = json.load(f)
|
| 29 |
+
materials = materials_data.get('materials', [])
|
| 30 |
+
except FileNotFoundError:
|
| 31 |
+
# Fallback to default materials
|
| 32 |
+
materials = ['Local Anaesthesia', 'Dry Needle', 'Botox',
|
| 33 |
+
'Saline', 'Magnesium', 'PRF']
|
| 34 |
+
st.warning("Using default materials list. Train the model to generate actual materials from your data.")
|
| 35 |
+
|
| 36 |
+
# Load metadata if available
|
| 37 |
+
metadata = {}
|
| 38 |
+
try:
|
| 39 |
+
with open('model_metadata.json', 'r') as f:
|
| 40 |
+
metadata = json.load(f)
|
| 41 |
+
except FileNotFoundError:
|
| 42 |
+
pass
|
| 43 |
+
|
| 44 |
+
return model, materials, metadata
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"Error loading model: {str(e)}")
|
| 47 |
+
st.stop()
|
| 48 |
+
|
| 49 |
+
# Initialize
|
| 50 |
+
model, materials, metadata = load_artifacts()
|
| 51 |
|
| 52 |
+
# Title and description
|
| 53 |
+
st.title("๐ฆท TMJ Injection Success Predictor")
|
| 54 |
+
st.markdown("""
|
| 55 |
+
This tool predicts the 3-month treatment success probability for TMJ injections based on patient baseline characteristics.
|
| 56 |
+
Enter the patient information below to see predictions for different injection materials.
|
| 57 |
+
""")
|
| 58 |
|
| 59 |
+
# Display model info if available
|
| 60 |
+
if metadata:
|
| 61 |
+
with st.expander("โน๏ธ Model Information"):
|
| 62 |
+
col1, col2, col3 = st.columns(3)
|
| 63 |
+
with col1:
|
| 64 |
+
st.metric("Model Type", metadata.get('model_type', 'Unknown'))
|
| 65 |
+
with col2:
|
| 66 |
+
st.metric("Test ROC-AUC", f"{metadata.get('test_roc_auc', 0):.3f}")
|
| 67 |
+
with col3:
|
| 68 |
+
st.metric("Training Date", metadata.get('training_date', 'Unknown')[:10])
|
| 69 |
+
|
| 70 |
+
st.write(f"**Success Definition:** {metadata.get('success_definition', 'Unknown')}")
|
| 71 |
+
|
| 72 |
+
if metadata.get('simplified_version', False):
|
| 73 |
+
st.info("This model uses the simplified feature set without text analysis.")
|
| 74 |
|
| 75 |
+
st.divider()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Create form
|
| 78 |
+
with st.form("patient_form"):
|
| 79 |
+
st.subheader("Patient Information")
|
| 80 |
+
|
| 81 |
+
# Required fields
|
| 82 |
+
col1, col2 = st.columns(2)
|
| 83 |
+
|
| 84 |
+
with col1:
|
| 85 |
+
st.markdown("**Required Fields**")
|
| 86 |
+
sex = st.selectbox("Sex", options=['Male', 'Female'], help="Patient's biological sex")
|
| 87 |
+
age = st.number_input("Age", min_value=10, max_value=100, value=45, help="Patient age in years")
|
| 88 |
+
pain_m0 = st.slider("Baseline Pain (M0)", min_value=0, max_value=10, value=7,
|
| 89 |
+
help="Pain score at baseline (0-10 scale)")
|
| 90 |
+
|
| 91 |
+
with col2:
|
| 92 |
+
st.markdown("** **") # Empty space to align with "Required Fields"
|
| 93 |
+
mmo_m0 = st.slider("Baseline MMO (M0)", min_value=0, max_value=80, value=35,
|
| 94 |
+
help="Maximum mouth opening at baseline (mm)")
|
| 95 |
+
ohip_14_m0 = st.slider("Baseline OHIP-14 (M0)", min_value=0, max_value=56, value=28,
|
| 96 |
+
help="Oral Health Impact Profile score at baseline (0-56)")
|
| 97 |
+
|
| 98 |
+
st.divider()
|
| 99 |
+
|
| 100 |
+
# Optional fields
|
| 101 |
+
st.markdown("**Optional Fields**")
|
| 102 |
+
col3, col4 = st.columns(2)
|
| 103 |
+
|
| 104 |
+
with col3:
|
| 105 |
+
location = st.text_input("Location", placeholder="e.g., Right TMJ",
|
| 106 |
+
help="Injection location")
|
| 107 |
+
muscle_injected = st.text_input("Muscle Injected", placeholder="e.g., Masseter",
|
| 108 |
+
help="Specific muscle targeted")
|
| 109 |
+
adjunctive_treatment = st.text_input("Adjunctive Treatment", placeholder="e.g., Physical therapy",
|
| 110 |
+
help="Additional treatments")
|
| 111 |
+
|
| 112 |
+
with col4:
|
| 113 |
+
previous_injection = st.selectbox("Previous Injection", options=['No', 'Yes'],
|
| 114 |
+
help="Has the patient had previous TMJ injections?")
|
| 115 |
+
if previous_injection == 'Yes':
|
| 116 |
+
material_in_previous_injection = st.selectbox("Previous Material",
|
| 117 |
+
options=[''] + materials,
|
| 118 |
+
help="Material used in previous injection")
|
| 119 |
+
else:
|
| 120 |
+
material_in_previous_injection = ''
|
| 121 |
+
|
| 122 |
+
st.divider()
|
| 123 |
+
|
| 124 |
+
# Material selection for primary prediction
|
| 125 |
+
st.markdown("**Primary Prediction**")
|
| 126 |
+
selected_material = st.selectbox("Select Material for Prediction",
|
| 127 |
+
options=materials,
|
| 128 |
+
help="Choose the material you're considering for this patient")
|
| 129 |
+
|
| 130 |
+
# Compare all materials option
|
| 131 |
+
compare_all = st.checkbox("Compare all available materials", value=True,
|
| 132 |
+
help="Show predictions for all materials to help with decision making")
|
| 133 |
+
|
| 134 |
+
# Submit button
|
| 135 |
+
submitted = st.form_submit_button("๐ฎ Predict Success", use_container_width=True, type="primary")
|
| 136 |
|
| 137 |
+
# Process form submission
|
| 138 |
if submitted:
|
| 139 |
+
# Create input dataframe
|
| 140 |
+
input_data = pd.DataFrame({
|
| 141 |
+
'sex': [sex],
|
| 142 |
+
'age': [age],
|
| 143 |
+
'pain_m0': [pain_m0],
|
| 144 |
+
'mmo_m0': [mmo_m0],
|
| 145 |
+
'ohip_14_m0': [ohip_14_m0],
|
| 146 |
+
'location': [location if location else np.nan],
|
| 147 |
+
'muscle_injected': [muscle_injected if muscle_injected else np.nan],
|
| 148 |
+
'adjunctive_treatment': [adjunctive_treatment if adjunctive_treatment else np.nan],
|
| 149 |
+
'previous_injection': [1 if previous_injection == 'Yes' else 0],
|
| 150 |
+
'material_in_previous_injection': [material_in_previous_injection if material_in_previous_injection else np.nan],
|
| 151 |
+
'material_injected': [selected_material]
|
| 152 |
+
})
|
| 153 |
+
|
| 154 |
+
# Make prediction for selected material
|
| 155 |
+
try:
|
| 156 |
+
prediction_proba = model.predict_proba(input_data)[0, 1]
|
| 157 |
+
|
| 158 |
+
# Display primary prediction
|
| 159 |
+
st.divider()
|
| 160 |
+
st.subheader("Prediction Results")
|
| 161 |
+
|
| 162 |
+
# Create a visual indicator
|
| 163 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 164 |
+
with col2:
|
| 165 |
+
# Success probability gauge
|
| 166 |
+
fig = go.Figure(go.Indicator(
|
| 167 |
+
mode = "gauge+number+delta",
|
| 168 |
+
value = prediction_proba * 100,
|
| 169 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 170 |
+
title = {'text': f"Success Probability with {selected_material}"},
|
| 171 |
+
number = {'suffix': "%", 'font': {'size': 40}},
|
| 172 |
+
gauge = {
|
| 173 |
+
'axis': {'range': [None, 100]},
|
| 174 |
+
'bar': {'color': "darkblue"},
|
| 175 |
+
'steps': [
|
| 176 |
+
{'range': [0, 30], 'color': "lightgray"},
|
| 177 |
+
{'range': [30, 70], 'color': "gray"},
|
| 178 |
+
{'range': [70, 100], 'color': "lightgreen"}
|
| 179 |
+
],
|
| 180 |
+
'threshold': {
|
| 181 |
+
'line': {'color': "red", 'width': 4},
|
| 182 |
+
'thickness': 0.75,
|
| 183 |
+
'value': 50
|
| 184 |
+
}
|
| 185 |
+
}
|
| 186 |
+
))
|
| 187 |
+
fig.update_layout(height=400)
|
| 188 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 189 |
+
|
| 190 |
+
# Interpretation
|
| 191 |
+
if prediction_proba >= 0.7:
|
| 192 |
+
st.success(f"โ
High likelihood of success ({prediction_proba:.1%}) with {selected_material}")
|
| 193 |
+
elif prediction_proba >= 0.5:
|
| 194 |
+
st.warning(f"โ ๏ธ Moderate likelihood of success ({prediction_proba:.1%}) with {selected_material}")
|
| 195 |
+
else:
|
| 196 |
+
st.error(f"โ Low likelihood of success ({prediction_proba:.1%}) with {selected_material}")
|
| 197 |
+
|
| 198 |
+
# Compare all materials if requested
|
| 199 |
+
if compare_all:
|
| 200 |
+
st.divider()
|
| 201 |
+
st.subheader("๐ Material Comparison")
|
| 202 |
+
|
| 203 |
+
# Predict for all materials
|
| 204 |
+
material_results = []
|
| 205 |
+
for material in materials:
|
| 206 |
+
temp_data = input_data.copy()
|
| 207 |
+
temp_data['material_injected'] = material
|
| 208 |
+
prob = model.predict_proba(temp_data)[0, 1]
|
| 209 |
+
material_results.append({
|
| 210 |
+
'Material': material,
|
| 211 |
+
'Success Probability': prob,
|
| 212 |
+
'Success %': f"{prob:.1%}"
|
| 213 |
+
})
|
| 214 |
+
|
| 215 |
+
# Sort by probability
|
| 216 |
+
material_df = pd.DataFrame(material_results)
|
| 217 |
+
material_df = material_df.sort_values('Success Probability', ascending=False)
|
| 218 |
+
|
| 219 |
+
# Display results
|
| 220 |
+
col1, col2 = st.columns([1, 1])
|
| 221 |
+
|
| 222 |
+
with col1:
|
| 223 |
+
# Table view
|
| 224 |
+
st.markdown("**Ranked Materials**")
|
| 225 |
+
display_df = material_df[['Material', 'Success %']].reset_index(drop=True)
|
| 226 |
+
display_df.index += 1 # Start index at 1
|
| 227 |
+
st.dataframe(display_df, use_container_width=True)
|
| 228 |
+
|
| 229 |
+
# Highlight best option
|
| 230 |
+
best_material = material_df.iloc[0]['Material']
|
| 231 |
+
best_prob = material_df.iloc[0]['Success Probability']
|
| 232 |
+
if best_material != selected_material:
|
| 233 |
+
st.info(f"๐ก Consider using **{best_material}** for potentially better outcomes ({best_prob:.1%} vs {prediction_proba:.1%})")
|
| 234 |
+
|
| 235 |
+
with col2:
|
| 236 |
+
# Bar chart
|
| 237 |
+
st.markdown("**Visual Comparison**")
|
| 238 |
+
fig = px.bar(material_df,
|
| 239 |
+
x='Success Probability',
|
| 240 |
+
y='Material',
|
| 241 |
+
orientation='h',
|
| 242 |
+
color='Success Probability',
|
| 243 |
+
color_continuous_scale='RdYlGn',
|
| 244 |
+
range_color=[0, 1],
|
| 245 |
+
text='Success %')
|
| 246 |
+
|
| 247 |
+
fig.update_traces(textposition='outside')
|
| 248 |
+
fig.update_layout(
|
| 249 |
+
xaxis_title="Success Probability",
|
| 250 |
+
yaxis_title="",
|
| 251 |
+
showlegend=False,
|
| 252 |
+
xaxis=dict(range=[0, 1.1]),
|
| 253 |
+
height=400
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Add vertical line at 50%
|
| 257 |
+
fig.add_vline(x=0.5, line_dash="dash", line_color="gray",
|
| 258 |
+
annotation_text="50% threshold")
|
| 259 |
+
|
| 260 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 261 |
+
|
| 262 |
+
# Additional insights
|
| 263 |
+
st.divider()
|
| 264 |
+
with st.expander("๐ Patient Summary"):
|
| 265 |
+
st.write("**Baseline Characteristics:**")
|
| 266 |
+
summary_cols = st.columns(3)
|
| 267 |
+
with summary_cols[0]:
|
| 268 |
+
st.write(f"- Age: {age} years")
|
| 269 |
+
st.write(f"- Sex: {sex}")
|
| 270 |
+
st.write(f"- Previous injection: {previous_injection}")
|
| 271 |
+
with summary_cols[1]:
|
| 272 |
+
st.write(f"- Pain score: {pain_m0}/10")
|
| 273 |
+
st.write(f"- MMO: {mmo_m0} mm")
|
| 274 |
+
st.write(f"- OHIP-14: {ohip_14_m0}/56")
|
| 275 |
+
with summary_cols[2]:
|
| 276 |
+
if location:
|
| 277 |
+
st.write(f"- Location: {location}")
|
| 278 |
+
if muscle_injected:
|
| 279 |
+
st.write(f"- Muscle: {muscle_injected}")
|
| 280 |
+
if adjunctive_treatment:
|
| 281 |
+
st.write(f"- Adjunctive: {adjunctive_treatment}")
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
st.error(f"Error making prediction: {str(e)}")
|
| 285 |
+
st.info("Please ensure the model was trained with all the necessary features.")
|
| 286 |
+
|
| 287 |
+
# Footer
|
| 288 |
+
st.divider()
|
| 289 |
+
st.markdown("""
|
| 290 |
+
<div style='text-align: center; color: gray;'>
|
| 291 |
+
<small>
|
| 292 |
+
TMJ Injection Success Predictor |
|
| 293 |
+
Model trained on historical patient data |
|
| 294 |
+
Predictions are probabilistic and should be used alongside clinical judgment
|
| 295 |
+
</small>
|
| 296 |
+
</div>
|
| 297 |
+
""", unsafe_allow_html=True)
|
| 298 |
|
| 299 |
+
# Sidebar with instructions
|
| 300 |
+
with st.sidebar:
|
| 301 |
+
st.header("๐ Instructions")
|
| 302 |
+
st.markdown("""
|
| 303 |
+
1. **Enter patient baseline data** in the form
|
| 304 |
+
2. **Select the material** you're considering
|
| 305 |
+
3. **Click Predict** to see the success probability
|
| 306 |
+
4. **Compare materials** to find the optimal choice
|
| 307 |
+
|
| 308 |
+
---
|
| 309 |
+
|
| 310 |
+
### ๐ฏ Success Definition
|
| 311 |
+
Treatment success is typically defined as:
|
| 312 |
+
- Pain reduction > 2 points
|
| 313 |
+
- MMO increase > 5 mm
|
| 314 |
+
- OHIP-14 reduction > 5 points
|
| 315 |
+
|
| 316 |
+
---
|
| 317 |
+
|
| 318 |
+
### ๐ Interpretation Guide
|
| 319 |
+
- **70%+**: High success likelihood โ
|
| 320 |
+
- **50-70%**: Moderate success โ ๏ธ
|
| 321 |
+
- **<50%**: Low success likelihood โ
|
| 322 |
+
|
| 323 |
+
---
|
| 324 |
+
|
| 325 |
+
### โ๏ธ Clinical Note
|
| 326 |
+
These predictions are based on statistical models and should complement, not replace, clinical expertise and patient-specific considerations.
|
| 327 |
+
""")
|