drkareemkamal commited on
Commit
905b82b
1 Parent(s): 6e4b89a

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -79
app.py DELETED
@@ -1,79 +0,0 @@
1
- # import libraries
2
- import os
3
- from dotenv import load_dotenv
4
-
5
- import pinecone
6
- from langchain.document_loaders import PyPDFDirectoryLoader
7
- from langchain.text_splitter import RecursiveCharacterTextSplitter
8
- from langchain.embeddings.openai import OpenAIEmbeddings
9
- from langchain_pinecone import PineconeVectorStore
10
- from langchain.prompts import PromptTemplate
11
- from langchain.chains.question_answering import load_qa_chain
12
- from langchain_community.llms import CTransformers
13
- from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
14
-
15
-
16
- load_dotenv()
17
-
18
- embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
19
- model_kwargs = {'device':'cpu'})
20
-
21
- os.environ['PINECONE_API_KEY'] = 'afb0bb4d-3c15-461b-91a4-fb12fb1f25f2'
22
- index_name = 'harisonvecot'
23
-
24
- vectorstore = PineconeVectorStore(index_name=index_name,embedding=embeddings)
25
-
26
- # Create the vector index from documents
27
- def create_index(documents):
28
- vectorstore.add_documents(documents)
29
-
30
- # Retrieve query from Pinecone
31
- def retrieve_query(query, k=2):
32
- matching_results = vectorstore.similarity_search(query, k=k)
33
- return matching_results
34
-
35
- # Custom prompt template
36
- custom_prompt_template = '''
37
- use the following pieces of information to answer the user's questions.
38
- If you don't know the answer, please just say that you don't know the answer, don't try to make up an answer.
39
- Content : {context}
40
- Question : {question}
41
- only return the helpful answer below and nothing else.
42
- '''
43
-
44
- def set_custom_prompt():
45
- prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
46
- return prompt
47
-
48
- # Load LLM model
49
- llm_model = CTransformers(model_name='TheBloke/Llama-2-7B-Chat-GGML',
50
- model_type = 'llama',
51
- max_new_token = 512,
52
- temperature=0.5)
53
-
54
- # Create retrieval QA chain
55
- def retrieval_qa_chain():
56
- prompt = set_custom_prompt()
57
- chain = load_qa_chain(llm_model, chain_type='stuff', prompt=prompt)
58
- return chain
59
-
60
- # Search answers from Vector DB
61
- def retrieve_answer(query):
62
- doc_search = retrieve_query(query)
63
- chain = retrieval_qa_chain()
64
- response = chain.run(input_documents=doc_search, question=query)
65
- return response
66
-
67
- queries = st.text_input('write a medical questions ?')
68
- # Example usage
69
- submit = st.button('submit')
70
- # Read and process documents
71
- # doc = read_doc('documents/')
72
- # documents = chunk_data(docs=doc)
73
- # create_index(documents)
74
- if submit :
75
- if queries :
76
- # Query and get answer
77
- #our_query = 'What is cause of Eczema?'
78
- answer = retrieve_answer(queries)
79
- st.write(answer)