Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,59 +1,59 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from langchain.prompts import PromptTemplate
|
| 3 |
-
from langchain.llms import CTransformers
|
| 4 |
-
|
| 5 |
-
# functio to get response from LLAMA 2 model
|
| 6 |
-
|
| 7 |
-
def get_llama_response(input_text,no_words,blog_style):
|
| 8 |
-
|
| 9 |
-
### LLama 2 model
|
| 10 |
-
llm = CTransformers(model = '
|
| 11 |
-
model_type = 'llama',
|
| 12 |
-
config = {'max_new_tokens': 256,
|
| 13 |
-
'temperature': 0.01})
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
## Prompt Template
|
| 17 |
-
template = """
|
| 18 |
-
write a blog for {blog_style} job profile for a topic {input_text}
|
| 19 |
-
within {no_words} words
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
prompt = PromptTemplate(input_vairables =['blog_style','input_text','no_words'],
|
| 23 |
-
template = template)
|
| 24 |
-
|
| 25 |
-
## Generate the response from LLMA 2 model
|
| 26 |
-
|
| 27 |
-
response = llm(prompt.format(blog_style=blog_style , input_text = input_text , no_words = no_words))
|
| 28 |
-
print(response)
|
| 29 |
-
return response
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
st.set_page_config(page_title = 'Generate Blogs',
|
| 34 |
-
page_icon = '',
|
| 35 |
-
layout = 'centered',
|
| 36 |
-
initial_sidebar_state = 'collapsed')
|
| 37 |
-
|
| 38 |
-
st.header('Generate Blogs ')
|
| 39 |
-
|
| 40 |
-
input_text = st.text_input('Enter the blog Topic')
|
| 41 |
-
|
| 42 |
-
## creating two more columns additional 2 fields
|
| 43 |
-
|
| 44 |
-
col1 , col2 = st.columns([5,5])
|
| 45 |
-
|
| 46 |
-
with col1 :
|
| 47 |
-
no_words = st.text_input('No. of words ')
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
with col2 :
|
| 51 |
-
blog_style = st.selectbox('Wiriting the blog for ',
|
| 52 |
-
('Researchers','Data Scientist','Common People'),index=0)
|
| 53 |
-
|
| 54 |
-
submit = st.button('Generate')
|
| 55 |
-
|
| 56 |
-
## final response
|
| 57 |
-
|
| 58 |
-
if submit :
|
| 59 |
-
st.write(get_llama_response(input_text,no_words,blog_style))
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.prompts import PromptTemplate
|
| 3 |
+
from langchain.llms import CTransformers
|
| 4 |
+
|
| 5 |
+
# functio to get response from LLAMA 2 model
|
| 6 |
+
|
| 7 |
+
def get_llama_response(input_text,no_words,blog_style):
|
| 8 |
+
|
| 9 |
+
### LLama 2 model
|
| 10 |
+
llm = CTransformers(model = 'TheBloke/Llama-2-7B-Chat-GGML',
|
| 11 |
+
model_type = 'llama',
|
| 12 |
+
config = {'max_new_tokens': 256,
|
| 13 |
+
'temperature': 0.01})
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Prompt Template
|
| 17 |
+
template = """
|
| 18 |
+
write a blog for {blog_style} job profile for a topic {input_text}
|
| 19 |
+
within {no_words} words
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
prompt = PromptTemplate(input_vairables =['blog_style','input_text','no_words'],
|
| 23 |
+
template = template)
|
| 24 |
+
|
| 25 |
+
## Generate the response from LLMA 2 model
|
| 26 |
+
|
| 27 |
+
response = llm(prompt.format(blog_style=blog_style , input_text = input_text , no_words = no_words))
|
| 28 |
+
print(response)
|
| 29 |
+
return response
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
st.set_page_config(page_title = 'Generate Blogs',
|
| 34 |
+
page_icon = '',
|
| 35 |
+
layout = 'centered',
|
| 36 |
+
initial_sidebar_state = 'collapsed')
|
| 37 |
+
|
| 38 |
+
st.header('Generate Blogs ')
|
| 39 |
+
|
| 40 |
+
input_text = st.text_input('Enter the blog Topic')
|
| 41 |
+
|
| 42 |
+
## creating two more columns additional 2 fields
|
| 43 |
+
|
| 44 |
+
col1 , col2 = st.columns([5,5])
|
| 45 |
+
|
| 46 |
+
with col1 :
|
| 47 |
+
no_words = st.text_input('No. of words ')
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
with col2 :
|
| 51 |
+
blog_style = st.selectbox('Wiriting the blog for ',
|
| 52 |
+
('Researchers','Data Scientist','Common People'),index=0)
|
| 53 |
+
|
| 54 |
+
submit = st.button('Generate')
|
| 55 |
+
|
| 56 |
+
## final response
|
| 57 |
+
|
| 58 |
+
if submit :
|
| 59 |
+
st.write(get_llama_response(input_text,no_words,blog_style))
|