drguilhermeapolinario
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -37,7 +37,6 @@ def load_embedding_model():
|
|
37 |
|
38 |
model = load_embedding_model()
|
39 |
|
40 |
-
# Inicialização do cliente Groq
|
41 |
client = Groq(
|
42 |
api_key=st.secrets["GROQ_API_KEY"],
|
43 |
)
|
@@ -48,12 +47,13 @@ def load_index_and_embeddings(index_file: str, embeddings_file: str):
|
|
48 |
embeddings = np.load(embeddings_file)
|
49 |
return index, embeddings
|
50 |
|
|
|
51 |
def search(query: str, index, embeddings: np.ndarray, chunks: list, k: int = 5):
|
52 |
query_vector = model.encode([query])
|
53 |
distances, indices = index.search(query_vector.astype('float32'), k)
|
54 |
return [chunks[i] for i in indices[0]]
|
55 |
|
56 |
-
|
57 |
def query_groq(prompt, client):
|
58 |
chat_completion = client.chat.completions.create(
|
59 |
messages=[
|
|
|
37 |
|
38 |
model = load_embedding_model()
|
39 |
|
|
|
40 |
client = Groq(
|
41 |
api_key=st.secrets["GROQ_API_KEY"],
|
42 |
)
|
|
|
47 |
embeddings = np.load(embeddings_file)
|
48 |
return index, embeddings
|
49 |
|
50 |
+
@st.cache_resource
|
51 |
def search(query: str, index, embeddings: np.ndarray, chunks: list, k: int = 5):
|
52 |
query_vector = model.encode([query])
|
53 |
distances, indices = index.search(query_vector.astype('float32'), k)
|
54 |
return [chunks[i] for i in indices[0]]
|
55 |
|
56 |
+
|
57 |
def query_groq(prompt, client):
|
58 |
chat_completion = client.chat.completions.create(
|
59 |
messages=[
|