drewThomasson's picture
Upload 10 files
c39db41 verified
raw
history blame
9.28 kB
import logging
import os
import gc
from pathlib import Path
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
import shutil
def train_gpt(custom_model,version, language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path, max_audio_length=255995):
# Logging parameters
RUN_NAME = "GPT_XTTS_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# print(f"XTTS version = {version}")
# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = os.path.join(output_path, "run", "training")
# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = False # if True it will star with evaluation
BATCH_SIZE = batch_size # set here the batch size
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps
# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="ft_dataset",
path=os.path.dirname(train_csv),
meta_file_train=train_csv,
meta_file_val=eval_csv,
language=language,
)
# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(Path.cwd(), "base_models",f"{version}")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/vocab.json"
XTTS_CHECKPOINT_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/model.pth"
XTTS_CONFIG_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/config.json"
XTTS_SPEAKER_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/speakers_xtts.pth"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) # config.json file
XTTS_SPEAKER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_SPEAKER_LINK)) # speakers_xtts.pth file
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
print(f" > Downloading XTTS v{version} files!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK, XTTS_CONFIG_LINK,XTTS_SPEAKER_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# Transfer this files to ready folder
READY_MODEL_PATH = os.path.join(output_path,"ready")
if not os.path.exists(READY_MODEL_PATH):
os.makedirs(READY_MODEL_PATH)
NEW_TOKENIZER_FILE = os.path.join(READY_MODEL_PATH, "vocab.json")
# NEW_XTTS_CHECKPOINT = os.path.join(READY_MODEL_PATH, "model.pth")
NEW_XTTS_CONFIG_FILE = os.path.join(READY_MODEL_PATH, "config.json")
NEW_XTTS_SPEAKER_FILE = os.path.join(READY_MODEL_PATH, "speakers_xtts.pth")
shutil.copy(TOKENIZER_FILE, NEW_TOKENIZER_FILE)
# shutil.copy(XTTS_CHECKPOINT, os.path.join(READY_MODEL_PATH, "model.pth"))
shutil.copy(XTTS_CONFIG_FILE, NEW_XTTS_CONFIG_FILE)
shutil.copy(XTTS_SPEAKER_FILE, NEW_XTTS_SPEAKER_FILE)
# Use from ready folder
TOKENIZER_FILE = NEW_TOKENIZER_FILE # vocab.json file
# XTTS_CHECKPOINT = NEW_XTTS_CHECKPOINT # model.pth file
XTTS_CONFIG_FILE = NEW_XTTS_CONFIG_FILE # config.json file
XTTS_SPEAKER_FILE = NEW_XTTS_SPEAKER_FILE # speakers_xtts.pth file
if custom_model != "":
if os.path.exists(custom_model) and custom_model.endswith('.pth'):
XTTS_CHECKPOINT = custom_model
print(f" > Loading custom model: {XTTS_CHECKPOINT}")
else:
print(" > Error: The specified custom model is not a valid .pth file path.")
num_workers = 8
if language == "ja":
num_workers = 0
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=max_audio_length, # ~11.6 seconds
max_text_length=200,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
epochs=num_epochs,
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=num_workers,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=100,
save_step=1000,
save_n_checkpoints=1,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
test_sentences=[],
)
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
speaker_ref = train_samples[longest_text_idx]["audio_file"]
trainer_out_path = trainer.output_path
# close file handlers and remove them from the logger
for handler in logging.getLogger('trainer').handlers:
if isinstance(handler, logging.FileHandler):
handler.close()
logging.getLogger('trainer').removeHandler(handler)
# now you should be able to delete the log file
log_file = os.path.join(trainer.output_path, f"trainer_{trainer.args.rank}_log.txt")
os.remove(log_file)
# deallocate VRAM and RAM
del model, trainer, train_samples, eval_samples
gc.collect()
return XTTS_SPEAKER_FILE,XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer_out_path, speaker_ref